Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting - Bioelectrical cell biology €12,49
Ajouter au panier

Resume

Samenvatting - Bioelectrical cell biology

 6 vues  0 fois vendu

Samenvatting van zowel het deel van prof. Ellender als prof. Van Ostade. Het deel van Ellender is o.b.v. nota's, slides en youtube video's. Het deel van Van Ostade is opgesplitst in inleiding tot kwantumbiologie (geschreven in samsung notes) en de toepassingen. Deze is opgesteld o.b.v. slides, not...

[Montrer plus]

Aperçu 3 sur 29  pages

  • 9 novembre 2024
  • 29
  • 2023/2024
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
tessanuyttens
1 Bioelectrical cell biology

Introduction and basic concepts
Cell types
Brain has 1011 neurons  lots of different types that mostly differ in the processes:

Unipolar Bipolar Pseudo-unipolar Multipolar
Dendrite and Cell body in Cell body process Dendrite is adjacent to the cell body, can be
axon in same middle of axon that branches basal or apical (further away) or can have a
direction of cell and dendrites into dendrites large amount of branching (Purkinje fiber)
body and axon

The specialisation of the neuron is based on its function  sensory neuron has
dendrites in skin cells and synapse of axon to ganglion, motor neurons have
their synapses at muscle level, neuroendocrine cells have their synapses at
capillary level, …

Aside from neurons, the brain also contains glial cells (10-5011) 
oligodendrocytes, shwann cells, astrocytes, …

Typing of the neurons is based on the Golgi-stained technique (with AgNO 3)
that was first performed by Golgi and Ramón y Cajal.

Electrical signalling
Here the neuronal membrane plays a crucial role  it acts as a barrier that separates the intra- and extra-
cellular space  the phospholipids in the membrane act as insulators  mosaicism in the membrane
enables transport/flow between the 2 spaces  aside from phospholipids, proteins like ion channels are
present ⇒ allow the flow of ions that are the base of electrical signalling.

The ion distribution across the spaces is roughly the same in all animals
 causes the resting membrane potential and when the equilibrium is
disturbed we mainly get an action potential.

The action potential
= an electoral potential (voltage) that is initiated close to the cell body
and propagates through the processes.

All neurons have a resting membrane potential = voltage difference
across the membrane in the cell at rest = no AP firing  result of the
unequal ion distribution  negative inside the cell, positive outside the
cell.
intracellular extracellular
The resting membrane potential (RMP) is determined by the open ion
channels  open ion channels encourage the membrane potential to
move towards the equilibrium potential of the ion.

The RMP is closest to the EK  K-channels contribute most to the RMP.

 The ionic pumps/exchanger use energy to keep ion concentrations away from Ex  e.g. Na/K-
ATPase pumps out 3 Na and pumps in 2 K with usage of ATP.
 Ion channels are mostly voltage-gated  with a certain voltage the channel opens  ion flow will be
based on its concentration gradient.

Neurons can be characterized by their frequency of AP’s  different ionic currents underlie the pattern of
the AP  other current types give different frequencies of AP’s.

,2 Bioelectrical cell biology

How many ions are needed to create a change in voltage
We can see the biological membrane as an electronic circuit  contains a capacitance = limiting the flow
speed of ions and a conductance = separation between the different charges.

The capacitance is fixed as it is based on the composition of the lipid bilayer:




Only a very small amount of charge needs to transfer for an efficient electric signal.

Computation
The axons of neurons are myelinated  in CNS this is done by oligodendrocytes, in PNS by Schwann cells
 myelination is needed for facilitating the propagation of electrical signals:

Unmyelinated Myelinated
Adjacent depolarization causes a slow propagation of the Saltatory conductance between the nodes of Ranvier
signal  ion fluxes throughout the whole axon  only causes a fast propagation  ion fluxes only take place at
change in shape and size can regain speed the node

Synaptic inputs are received by the dendrites  typical neurons may make/receive 100-1000 synaptic
inputs.

The brain has 1015 synapses  have a computational power of 1016 when there are 10 impulses/second (=
average). Synapses can be close to dendrites (axodendritic), to soma (axosomatic) or to axons (axoaxonic).

With chemical transmission, computational power is added due to:

→ Diversity of neurotransmitters
→ Diversity of receptors
→ Variability in polarity of the effector signal
→ Variability in temporal signals
→ Signal amplification due to intracellular cascades
→ Molecular frequency filtering
→ Short and long term plasticity

Not every AP is converted into a secretory signal  10-20% trigger a release  due to modulation by
intracellular messenger, extracellular modulators or previous synapse use (memory).

Chemical signalling
Chemical transmission can happen locally (synaptic or paracrine) or distantly (endocrine). In the synapse
vesicles are present  loaded with proteins (neurotransmitters) by a proton gradient  AP leads to fusion
of vesicles and therefore release  due to SNARE-complex proteins  binding and conformational changes
causes membrane fusion:

, 3 Bioelectrical cell biology




Neurotransmitter systems
Neurotransmitters are presynaptically synthesized and stored  with an AP the exocytosis is triggered by
increase of Ca2+  trigger the post-synaptic receptors  action is terminated by enzyme catabolism =
breakdown or by re-uptake.

4/5 main classes of neurotransmitters

1. Ach (acetylcholine)  used for motor neurons and in CNS
2. Amino acids  can be excitatory (Glu, Asp) or inhibitory (GABA)
3. Amines  catecholamines = dopamine and norepinephrine + indolamines = serotonin +
imidazoleamine = histamine
4. Peptides  3-30 AA long and stored in dense core granule vesicles
5. Purines  mostly ATP

Neurotransmitter receptors

Many of the NT receptors are ion channels  binding of an NT will cause different scenarios:

→ Influx of Na  depolarisation (EPSP = excitatory post synaptic potential = more positive on the
inside)
→ Efflux of K  hyperpolarisation (IPSP = inhibitory post synaptic potential = more negative on the
inside)
→ Influx of Cl  hyperpolarisation
→ Influx of Ca  activation of enzymes

Other NT receptors are metabotropic  G-protein coupled receptors  will cause ion channels to open or
will cause activation of enzymes and an intracellular cascade.

Co-transmission

NT’s are found to co-transmit  adds to the power of the nervous system.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur tessanuyttens. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €12,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

59063 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€12,49
  • (0)
Ajouter au panier
Ajouté