,Answer: The unit impulse function is the mathematical representation of a unit impulse. That is a very
large force applied over a short period of time such that the integral of force over time is one. If the force
0 𝑡𝑡 ≠ 𝑎𝑎
is applied at time a then the unit impulse function is defined by 𝛿𝛿 (𝑡𝑡 − 𝑎𝑎) = � where
∞ 𝑡𝑡 = 𝑎𝑎
∞
∫0 𝛿𝛿 (𝑡𝑡 − 𝑎𝑎)𝑑𝑑𝑑𝑑 = 1
SA1.13 An electrical system has a voltage spike totaling 26 V∙s. Express this spike in mathematical form?
Answer: 𝑣𝑣 (𝑡𝑡) = 26𝛿𝛿 (𝑡𝑡)
SA1.14 A mechanical system is subject to an impulse of 0.4 N∙s. Express this in mathematical form?
Answer: 𝐼𝐼 (𝑡𝑡) = 0.4𝛿𝛿 (𝑡𝑡)
SA1.15 An electrical system is subject to the voltage input shown in Figure SP 1.15. Write a mathematical
form for the voltage.
SA1.17 What is the total impulse imparted to a mechanical system from the force shown in Figure SP
1.16?
0.05 0.1 1
Answer: ∫0 240𝑡𝑡𝑡𝑡𝑡𝑡 + ∫0.05 240(0.1 − 𝑡𝑡)𝑑𝑑𝑑𝑑 = (12)(0.1) = 0.6 N ∙ s
2
,SA1.23 Linearize the function tan 0.3𝜃𝜃 for small 𝜃𝜃.
Answer: tan 0.3𝜃𝜃 ≈ 0.3𝜃𝜃
SA1.24 Linearize the function sin 𝜃𝜃 cos 2 𝜃𝜃 for small 𝜃𝜃.
Answer: sin 𝜃𝜃 cos 2 𝜃𝜃 ≈ 𝜃𝜃 (1)2 = 𝜃𝜃
SA1.25 Linearize the differential equation assuming small 𝜃𝜃
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃
2
+ cos 𝜃𝜃 + tan 𝜃𝜃 = 6 sin 2𝑡𝑡
𝑑𝑑𝑡𝑡 𝑑𝑑𝑑𝑑
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃
Answer: + + 𝜃𝜃 = 6 sin 2𝑡𝑡
𝑑𝑑𝑡𝑡 2 𝑑𝑑𝑑𝑑
SA1.26 Linearize the differential equation assuming small 𝜃𝜃
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃 1
+ 4𝑡𝑡 cos 𝜃𝜃 + 16 sin � 𝜃𝜃� cos(3𝜃𝜃) = 6 sin 2𝑡𝑡
𝑑𝑑𝑡𝑡 2 𝑑𝑑𝑑𝑑 2
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃
Answer: + 4𝑡𝑡 + 8𝜃𝜃 = 6 sin 2𝑡𝑡
𝑑𝑑𝑡𝑡 2 𝑑𝑑𝑑𝑑
SA1.27 Fill in the blanks from the choices in parentheses regarding the differential equation
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃
2
+ 4𝑡𝑡 + 12𝜃𝜃 = 6 sin 2𝑡𝑡
𝑑𝑑𝑡𝑡 𝑑𝑑𝑑𝑑
Answer: The equation is an ordinary differential equation. It has an independent variable of t and a
dependent variable of 𝜃𝜃. It is a linear, nonhomogeneous differential equation with variable coefficients.
SA1.28 Fill in the blanks from the choices in parentheses regarding the differential equation
𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝜃𝜃
2
+ 4 cos 𝜃𝜃 + 12 sin 𝜃𝜃 = 0
𝑑𝑑𝑡𝑡 𝑑𝑑𝑑𝑑
Answer: The equation is an ordinary differential equation. It has an independent variable of 𝑡𝑡 and a
dependent variable of 𝜃𝜃 It is a linear, homogeneous differential equation with constant coefficients.
PROBLEMS
1.1 Newton’s law of cooling is used to calculate the rate at which heat is transferred by convection to a
solid body at a temperature T from a surrounding fluid at a temperature T∞. The formula is
𝑄𝑄̇ = ℎ𝐴𝐴(𝑇𝑇 − 𝑇𝑇∞ ) (𝑎𝑎)
where Q˙ is the rate of heat transfer (rate of energy transfer), A is the area over which heat is transferred
by convection, and h is the heat transfer coefficient (also called the film coefficient). Use Equation (a) to
determine the basic dimensions of h. Suggest appropriate units for h using the English system and the SI
system.
, Solution
Equation (a) of the problem statement is used to solve for ℎ as
𝑄𝑄̇
ℎ= (𝑏𝑏)
𝐴𝐴(𝑇𝑇 − 𝑇𝑇∞ )
The Principle of Dimensional Homogeneity is used to determine the dimensions of the heat transfer
coefficient. Using the F-L-T system, the dimensions of the quantities in Equation (b) are
F∙L
�𝑄𝑄̇� = � � (𝑐𝑐)
T
2
[𝐴𝐴] = [L ] (𝑑𝑑)
[𝑇𝑇 − 𝑇𝑇∞ ] = [Θ] (𝑒𝑒)
From Equations (b)-(e)the dimensions of the heat transfer coefficient are
F∙L F
[ℎ] = � 2
�=� � (𝑓𝑓)
T∙Θ∙L T∙Θ∙L
N
Possible units for the heat transfer coefficient using the SI system are while possible units using the
m∙s∙K
lb
English system are .
ft∙s∙R
1.2 The Reynolds number is used as a measure of the ratio of inertia forces to the friction forces in the
flow of a fluid in a circular pipe. The Reynolds number (Re) is defined as
𝜌𝜌𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅 = (𝑎𝑎)
𝜇𝜇
where 𝜌𝜌 is the mass density of the fluid, V is the average velocity of the flow, D is the diameter of the
pipe, and μ is the dynamic viscosity of the fluid. Show that the Reynolds number is dimensionless.
Solution
The dimensions on the quantities on the right-hand side of Equation (a) are obtained using Table 1.2 as
M
[𝜌𝜌] = � 3 � (𝑏𝑏)
L
L
[𝑉𝑉 ] = � � (𝑐𝑐)
T
[𝐷𝐷] = [L] (𝑑𝑑)
M
[𝜇𝜇] = � � (𝑒𝑒)
L∙T
Substituting Equations (b)-(e) into Equation (a) leads to
M L
L3∙T∙L
[Re] = � � = [1] (𝑓𝑓)
M
L∙T
Equation (f) shows that the Reynolds number is dimensionless.
𝑑𝑑𝑑𝑑
1.3 The relationship between voltage and current in a capacitor is 𝑖𝑖 = 𝐶𝐶 . Use this relation to determine
𝑑𝑑𝑑𝑑
the basic dimensions of the capacitance C.
Solution
The capacitance of a capacitor is defined by
𝑖𝑖
𝐶𝐶 = (𝑎𝑎)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
The dimension of 𝑖𝑖 is that of electric current, which is a basic dimension. The dimensions of electric
potential are obtained from Table 1.2 as
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur solutions. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €18,19. Vous n'êtes lié à rien après votre achat.