Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Hull: Options, Futures, and Other Derivatives Summary and Cheat Sheet €5,37
Ajouter au panier

Resume

Hull: Options, Futures, and Other Derivatives Summary and Cheat Sheet

 24 vues  0 fois vendu
  • Cours
  • Établissement
  • Book

A summary of 'Options, Futures, and Other Derivatives summary' by John C. Hull with focus on the UoL LSE Derivatives and Risk Management syllabus. A handy cheat sheet is included at the end. Save yourself the time of having to sift through the textbook- It is done very concisely here in this do...

[Montrer plus]

Aperçu 2 sur 7  pages

  • Non
  • All chapters necessary for the fn3206 module (see description for topics)
  • 9 décembre 2024
  • 7
  • 2024/2025
  • Resume
  • Inconnu
avatar-seller
Options, Futures, and Other Derivatives summary
3rd Party summary of John C. Hull’s textbook


Financial Derivatives Overview
Key Concepts:

• Derivatives are financial instruments whose value depends on an underlying asset (e.g., stock, bond, com-
modity).
• They are used for hedging, speculation, and arbitrage.
• Types of derivatives: forwards, futures, options, and swaps.
• Equity derivatives (like call/put options) and interest rate derivatives (like swaps) are key areas in your
course.
• Arbitrage-free pricing, replication, and risk-neutral pricing are foundational concepts in derivative
pricing.

Example Question: - What is the payoff of a forward contract on a stock with a forward price of
$50?
Answer: The payoff of the forward contract at maturity is:

• Long position payoff: 𝑆𝑇 − 50 (where 𝑆𝑇 is the spot price at maturity).
• Short position payoff: 50 − 𝑆𝑇 .


Fundamental Theorem of Asset Pricing (FTAP)
Key Concepts: - The Fundamental Theorem of Asset Pricing (FTAP) states that in a no-arbitrage
market, there exists a risk-neutral measure under which all securities are priced.

• It links no arbitrage to the existence of a risk-neutral world where the discounted expected value of the
future cash flows is equal to the current price.
• Replication means creating a portfolio of the underlying asset and a risk-free bond that replicates the payoffs
of the derivative.

Example Question:
Given a call option with a strike price of $50, a stock price of $52, a risk-free rate of 5%, and a
1-year maturity, show how the absence of arbitrage can lead to the existence of a risk-neutral pricing
measure.
Answer:
Using the FTAP, the price of a derivative is the discounted expected payoff under the risk-neutral probability
measure.
For a call option with strike 𝐾, the price 𝐶0 is:

𝐶0 = 𝑒−𝑟𝑇 𝔼𝑄 [max(𝑆𝑇 − 𝐾, 0)]


1

, Binomial Tree Model
Key Concepts: - The binomial tree model is a discrete-time model used for option pricing. It approximates
the underlying asset’s price movements over discrete intervals.

• The model assumes that at each step, the asset price either up or down by a fixed factor.
• The risk-neutral probabilities are used to calculate the option’s price by working backward from expiration.

Formula: The price of a derivative at time 𝑡 = 0 is given by:


𝐶0 = exp(−𝑟 ⋅ Δ𝑡) ⋅ (𝑞 ⋅ 𝐶𝑢 + (1 − 𝑞) ⋅ 𝐶𝑑 )

where:

• 𝐶𝑢 and 𝐶𝑑 are the option prices at the up and down nodes,

• 𝑞 is the risk-neutral probability,
• 𝑟 is the risk-free rate
• Δ𝑡 is the time step.

Example Question:
A stock price is $50. The stock can either go up by 10% or down by 10% over one period. The risk-free rate is 5%.
What is the value of a European call option with a strike price of $52 using a one-period binomial tree?
Answer:
Up move: 𝑆𝑢 = 50 × 1.10 = 55
Down move: 𝑆𝑑 = 50 × 0.90 = 45
Option payoffs:


𝐶𝑢 = max(55 − 52, 0) = 3


𝐶𝑑 = max(45 − 52, 0) = 0

Risk-neutral probability:

𝑒0.05 − 0.90
𝑞= = 0.75
1.10 − 0.90

Option price:


𝐶0 = 𝑒−0.05 × [0.75 × 3 + 0.25 × 0] = 𝑒−0.05 × 2.25 ≈ 2.14


Black-Scholes Formula
Key Concepts: - The Black-Scholes model is a continuous-time model used for pricing European options. It
assumes constant volatility, no dividends, and a lognormal distribution of asset prices.

• The model uses stochastic calculus and provides a closed-form solution for European options.



2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur LSEmattUoL. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,37. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52510 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€5,37
  • (0)
Ajouter au panier
Ajouté