Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Descriptive and Inferential Statistics €6,96
Ajouter au panier

Resume

Samenvatting Descriptive and Inferential Statistics

 9 vues  0 fois vendu

Samenvatting van alle powerpoints en lessen. Gemaakt voor het schakelprogramma van de master Psychologie voor het vak Descriptive and Inferential Statistics voor de examenperiode van januari 2025. Zie de tags voor de verschillende onderwerpen. Het document heeft 38 bladzijdes en is gemaakt in m...

[Montrer plus]
Dernier document publié: 1 semaine de cela

Aperçu 4 sur 38  pages

  • 15 décembre 2024
  • 23 décembre 2024
  • 38
  • 2024/2025
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
Mellowerillish
DIS – januari 2025 1




VARIABLES
= the values we want to measure, e.g. time in seconds, score on a test, gender
- Random variables are variables whose values are unknown and are realizations of a random process

INDEPENDENT VS DEPENDENT VARIABLES
Independent variables Dependent variables
= variable that is not dependent on any other = variable that depends on other factors, the output,
variable, the input, the predictor, the explanation the criteria, the response
- Commonly represented as X1, …, Xj, …, Xk - Commonly represented as Y1, …, Yj, …, Yk
- E.g. the amount of time spent studying - E.g. the exam result

DISCRETE VS CONTINUOUS VARIABLES
Discrete variables Continuous variables
= a variable that only assumes a limited number of = numeric variable that has an infinite number of
values possibilities between two values
- E.g. someone speaks 3 languages, yes/no - E.g. someone looked at a picture for 1,3828 sec
- A discrete variable that - A variable is considered continuous when
• Only assumes two values is a dichotomous • The variable takes on a wide range of values
variable • The variable is a manifestation of an
• Only assumes three values is a underlying continuous variable
trichotomous variable
• Assumes three or more values is a
polytomous variable

QUALITATIVE VS QUANTITATIVE VARIABLES
Qualitative variables Quantitative variables
= numbers only refer to equalities and inequalities = numbers are assigned so that differences between
between the research elements (regarding the numbers correspond with distances between
measured characteristics) research elements (regarding the measured
 The number is only a name or label characteristics)
 Calculating is not meaningful  Number is a real number
 Calculating is meaningful
- Nominal variable, e.g. Dutch (1), English (2)
- Ordinal variable, e.g. not satisfied (1) → very - Interval variable, e.g. temperature in °C, Likert-
satisfied (5) scale in numbers
• ! the numbers must be compared by - Ratio variable, e.g. temperature in °K, time
size/order but are not meaningful to
calculate with

There is a hierarchy within the different types of variables:
- While all quantitative variables can be ordinal variables
(seeing as they are numbers and can be ordened), not all
ordinal variables are quantitative variables
- Ordinal variables can be thought of as qualitative variables
where order matters but numerical measurement or
distance between categories doesn’t really matter

,DIS – januari 2025 2



DESCRIBING 1 VARIABLE

TABLES
- Variables are represented by capital letters in
italics in the columns, e.g. X4
- Research elements are located in the rows and
are represented with a Xij formula, with i
referring to the research element and j to the
variable, e.g. X14 = 3




FREQUENCY TABLES
The (absolute) frequency distribution of X is denoted as f(X), e.g. f(X=77) = 3 because the score 77 occurs 3
times

Cumulative frequency of a specific score on X is the total number of scores lower than or equal to that specific
score and its distribution is denoted as F(X), e.g. F(X=77) = 14
- This is not meaningful for qualitative data as the categories are not ordered

Relative frequencies or proportions of scores on X are the frequencies divided by the number of observations
and its distribution is denoted as p(X), e.g. p(X=77) = 3/30 = 0.1

Relative cumulative frequencies or cumulative proportions of a specific score on X equals the cumulative
frequency divided by the total number of observations and its distribution is denoted as P(X), e.g. P(X=77) =
14/30 = 0.47




STEM-AND-LEAF PLOTS
- Read scores by stem.leaf*101, e.g. 8.4*101 = 84
- When looking for a certain percentile and the n is even,
take then average of the two scores, e.g. P50 of n = 30 is
the 15th score, so (78+78)/2 = 78
- When looking for a percentile and matching score is not
in there (e.g. P25 when n = 10), look at the score above

,DIS – januari 2025 3


KEY STATISTICS

PERCENTILES
= score on X under which at least (so lower or equal) a specific % of scores is situated, e.g. 10th percentile
corresponds to score 8 so at least 10% of scores ≤ 8 → P10 = 8
- To calculate, simply find the corresponding score to the % given in the relative cumulative frequency table
• Is the % not literally in the table? Find the smallest higher percentile and take that score
• Is the % literally in the table and n is an even number? Take the median between that one and the one
above
- Special percentiles:
• Quartiles (in 4), with Q1 = P25, Q2 = P50 and Q3 = P75
• Deciles (in 10), with D1 = Pc10, D2 = P20, …
 These are all special forms of quantiles or fractiles: a score under which a specific proportion of scores is
situated

Example with Stem-and-leaf plot




CENTER

MODE
= score or category with highest frequency, e.g. 2, 3, 3, 4, 6 → mode = 3
- Can be used for both quantitative and qualitative variables
- Uniqueness?
• Unimodal distribution: mode is uniquely defined
• Bimodal or multimodal distribution: two (or more) scores or categories have the maximum frequency,
e.g. 2, 3, 3, 4, 4, 6 → bimodal: mode = 3 and 4

MEDIAN
= the middle value, so (at least) half of the scores are above it and (at least) half are below it
= Q2 = P50
- Calculate by ordering all observed scores, then taking the middle score or averaging the two middle scores

THE (ARITHMETIC) AVERAGE
1 1
𝑋̅ = 𝑛 ∑𝑛𝑖=1 𝑋𝑖 with ∑𝑛𝑖=1 𝑋𝑖 as the sum of all observed values and 𝑛 as this sum divided by the number of
observed values, e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3+3+4+4+5)/6 = 21/6 = 3.5

, DIS – januari 2025 4


Different formulas for frequency table with k scores with examples:
1
- Using absolute frequencies: 𝑋̅ = 𝑛 ∑𝑘𝑖=1 𝑋𝑖 × 𝑓𝑖 , waarbij ∑𝑘𝑖=1 𝑓𝑖 =
𝑛
e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3x2+4x2+5)/6 = 21/6 = 3.5
- Using relative frequencies: 𝑋̅ = ∑𝑘𝑖=1 𝑋𝑖 × 𝑝𝑖 , waarbij ∑𝑘𝑖=1 𝑝𝑖 = 1
e.g. = 2*.17 + 3*.33 + 4*.33 + 5*.17 = 3.5

SPREAD
If a distribution needs to be described by a single number, one usually chooses a measure of central tendency
(mean, median …). However, two distributions can have the same mean/median yet look completely different!

RANGE
= difference between max and min score
- 𝐵 = 𝑋[𝑚𝑎𝑥] − 𝑋[𝑚𝑖𝑛]
- This is extremely sensitive to outliers!

INTERQUARTILE RANGE
= difference between third and first quartile
- 𝐼𝑄𝑅 = 𝑄3 − 𝑄1
- This is a more robust measure of spread for quantitative variables

VARIANCE
= average quadratic deviation from the arithmetic average
1
- 𝑆𝑋2 = 𝑛 ∑𝑛𝑖=1(𝑋𝑖 − 𝑋̅ )2
- Can never be negative!

Calculate by
1) Sum to n
2) Calculate 𝑋̅
3) Calculate the deviations (𝑋 − 𝑋̅)
4) Square the deviations
5) Sum these squares
6) Divide by n



STANDARD DEVIATION
= corrects the “squaredness” from the variance to ensure it is expressed in the original unit of measurement
- 𝑆𝑋 = √𝑆𝑋2
- Can never be negative!

LINEAR TRANSFORMATIONS
VARIABLE X VARIABLE X’
𝑋 𝑋 ′ = 𝑎 + 𝑏𝑋
𝑆𝑋2 2
𝑆𝑋′ = 𝑏 2 𝑆𝑋2
𝑆𝑋 𝑆𝑋′ = |𝑏|𝑆𝑋

STANDARDIZING AND Z-SCORES
= transforming a variable such that the average becomes 0 and the standard deviation becomes 1
- Scores on standardized variables are called standard scores or z-scores, which indicate how many standard
deviations you score above or below the average
𝑋𝑖 −𝑋̅
- 𝑧𝑖 = 𝑆𝑋

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Mellowerillish. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,96. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

48298 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€6,96
  • (0)
Ajouter au panier
Ajouté