1 What – data
1.1 Introductie
1.2 Data
1.3 History of data
1.3.1 Vroeger floppy disks
1.3.2 Hard disks
1.3.3 The cloud
1.4 Data producers
1.5 Processen
1.6 Technologie
1.7 Havens
1.8 Big data V's
1.9 Types of data
2 Data visualisatie
2.1 What?
2.2 Why?
2.2.1 Seei...
Inhoudsopgave
1 What – data 5
1.1 Introductie 5
1.2 Data 5
1.3 History of data 5
1.3.1 Vroeger floppy disks 5
1.3.2 Hard disks 5
1.3.3 The cloud 5
1.4 Data producers 5
1.5 Processen 6
1.6 Technologie 7
1.7 Havens 8
1.8 Big data V's 8
1.9 Types of data 9
2 Data visualisatie 9
2.1 What? 9
2.2 Why? 9
2.2.1 Seeing is understanding 9
2.2.2 Visualization is the first step 10
2.2.3 Descriptive analytics 10
2.2.4 Diagnostic analytics 10
2.2.5 Predicitive analystics 10
2.2.6 Prescriptive analytics 10
2.2.7 Analysis complexity vs. human input 11
2.3 How to visualize 11
2.3.1 How not? 11
2.3.2 How? 11
2.4 Dashboarding 11
2.4.1 Maak je dashboard 12
3 Why - value 12
3.1 Value streams 12
3.2 Data use cases (UC) 13
3.3 Business value pyramids 15
3.3.1 Business-to-Consumer (B2C) piramide 15
3.3.2 Business-to-Business (B2B) piramide 16
4 What – Data tools 17
4.1 Analytical tools 17
4.2 Digital applications 17
4.3 AI Prompts 17
5 What – Data products 18
5.1 Data products 18
5.1.1 Use case view 18
5.2 Data product parts 19
5.2.1 Dataset 19
5.2.2 Meta data 19
5.2.3 Physical format 19
5.3 Data product integration 20
,Anaïs Cai
6 What – Data transformations 21
6.1 DIKW Framework 21
6.2 Typical data transformations 21
6.2.1 Conversion 21
6.2.2 Aggregation 22
6.2.3 Filtering 22
6.2.4 Advanced 22
6.2.5 Integration 22
7 Storytelling 23
7.1 The Story of Ignaz Semmelweis 23
7.2 Data storytelling 23
7.3 Best practices 24
7.3.1 Story structure 24
7.3.2 Providing context 24
7.4 4 D’s 25
7.5 Using text & visual clues 25
7.5.1 Algemene richtlijnen 25
7.5.2 Headlines 25
7.5.3 Graphical & textual cues 25
7.5.4 Annotations vs commentary 26
8 AI 26
8.1 History 26
8.2 AI capabilities 27
8.3 AI models 29
8.4 AI model quality 30
8.5 Generative AI 30
8.6 Trust & ethics 31
9 How – data platform (technologie) 31
9.1 Introductie 31
9.2 Process 32
9.2.1 Store (opslag) 32
9.2.2 Ingest - invoer 34
9.2.3 Transform & deliver 34
9.3 Pipelines 34
9.4 Security 35
9.5 Observability 35
10 How – data management 35
10.1 Data lifecycle 35
10.1.1 Create 36
10.1.2 Store 36
10.1.3 Use 36
10.1.4 Share 36
10.1.5 Archive 36
10.1.6 Destroy 36
10.2 Data governance 36
10.3 Data management 37
10.3.1 Data architecture 37
10.3.2 Data model & design 38
10.3.3 Data storage & operations 39
10.3.4 Data security 39
3
, Anaïs Cai
10.3.5 Data integration & interoperability 39
10.3.6 Data quality 39
10.3.7 Meta data 40
10.3.8 Data Warehouse 40
10.4 Organization 40
4
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur anaiscai. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €10,99. Vous n'êtes lié à rien après votre achat.