Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Biological Research Techniques €8,49
Ajouter au panier

Resume

Samenvatting Biological Research Techniques

 1 vue  0 fois vendu

Document bevat alle geziene leerstof van het vak BRT. Geschreven met behulp van notities uit de les, powerpoints en extra opzoekwerk bij de technieken om ze volledig te hebben. Meeste hoofdstukken zijn in het Engels, Proteomics, wildlife monitoring en introductie in regels van wetenschappelijk argu...

[Montrer plus]

Aperçu 3 sur 32  pages

  • 24 décembre 2024
  • 32
  • 2024/2025
  • Resume
Tous les documents sur ce sujet (2)
avatar-seller
Andarta
Biological research techniques




Biological model organisms ..................................................................................................................... 2
Experimental design ................................................................................................................................ 5
Light microscopy ...................................................................................................................................... 6
Electronic microscopy.............................................................................................................................. 8
Spectroscopy ......................................................................................................................................... 12
Electrophoresis ...................................................................................................................................... 19
Proteomics............................................................................................................................................. 20
Chromatography .................................................................................................................................... 22
Ecosystem research ............................................................................................................................... 26
Wildlife monitoring................................................................................................................................ 29
Remote sensing ..................................................................................................................................... 30
Introductie in de regels van wetenschappelijk argumenteren & kritisch denken ................................. 31

,Biological model organisms
The first biological model
Drosophila melanogaster: fruit fly, breeding experiments by Thomas Hunt Morgan.
Eye colour inherited → associated with specific genes.
+ : small, rapid reproduction: short generation time, easy to measure traits, sexual dimorphism, easy
to maintain: simple diet, low ethical and financial burden.

Criteria to be a good biological model
- Genetic tractability: well-characterized genome → easily manipulated and studied
- Short generation time: study multiple generations
- High reproduction rate: facilitates statistical analyses
- Small size: simplifies housing and maintenance
- Ease of cultivation: reduce cost
- Clear developmental stages → study embryogenesis
- Conservation of biological mechanisms → provide insights into fundamental biological processes
applicable across different species.
- Availability of tools and resources: established protocols

E.coli
→ Bacteria → enterobacterales (lives in gut: harmless, digestion)
→ Diet: gut content (fermenter)
First organisms to have genome (small and circular) sequenced, quick and easy to grow.
Biotechnology workhorse: rapidly produce large amounts of protein: insulin or enzyme production,
recombinant proteins, vaccine antigens.
Bioindicator for water quality: fecal contamination.
Evolutionary model: long-term evolution experiment (LTEE) → parallel evolution. Experimental
evolution of antibiotic resistance → mutations in specific genes of horizontal gene transfer. Evolution
of cooperation and altruism: self-sacrifice.
Synthetic biology (Toggle switch): creating an organism from scratch, stable states under same
conditions → detecting switch from state 1 to state 2: synthetic memory → 2 promotors that inhibit
each other’s activity.
Gene regulation: LAC operon, induce expression of necessary genes for lactose metabolism →
adaptation.

Yeast (Saccharomyces cereviviae)
→ looks like bacteria → Eukaryota → fungi → Ascomycetes
→ Habitat: on surfaces of plant tissue
→ Diet: fresh organic matter (sugars)
Model in cell cycle regulation: yeast easy to manipulate → cyclins ( = proteins that oscillate in
concentration throughout cell cycle, bind to CDKs to activate them at specific points in cycle), cell
cycle checkpoints (critical points where regulatory proteins assess whether cell proceeds to next
phase), ubiquitin-mediated protein degradation (proteins are tagged with ubiquitin molecules and
subsequently degraded by proteasome), tumor suppression and cancer.

Slime (Dictyostelium discoideum)
→ myxomycetes, makes fruiting bodies (“small mushroom”).
→ Habitat: forest floors, decaying leaves, rotten logs (damp and organic)
→ Diet: bacteria
Individual amoeba-like cells live independently → in scarcity cells aggregate to form “slug”: moves

, towards light and heat (chemotaxis), forms fruiting body with stalk and spore-containing structure.
Chemical signalling: cAMP gradient → signal for cells to move towards higher concentrations when
food becomes scarce.
Cell motility and chemotaxis: cAMP directed movement → cells move in response to gradients of
signalling molecules.
Cell differentiation and developmental transitions: stalk cells at base of slug undergo programmed
cell death do sporocarp raises above ground.
Phagocytosis and immune responses: phagocytic organism → engulfing bacteria: builds immunity.
Aggregation and collective movement: chemotaxis through cAMP gradient, cell-cell adhesion
molecules facilitate contact between cells and intracellular pathways activate upon contact =
behaviour changes → synchronized cell movement and differentiation.

Roundworm (Caenorhabditis elegans)
→ Nematoda
→ Habitat: decaying organic matter like soil, compost.
→ Diet: bacteria and other microorganisms.
Good model: simple nervous system and transparent body → studying neuronal development.
RNA interference (RNAi): injecting dsRNA in cells to study gene function.
Apoptosis: fixed pattern of cell divisions → cell dead is normal and tightly regulated, cancer research.
Aging and longevity: resveratrol in wine → extends lifespan + enhances stress resistance.
Stress tolerance: conserved stress-responsive pathways like heat shock factors (HSF), pathogen
responses: toll-like receptor pathway, autophagy and apoptosis, nutrient-sensing pathways like
insulin/insulin-like growth factor (IGF).

Fruit fly (Drosophila melanogaster)
→ Arthropoda → Diptera
→ Habitat: rotting fruits.
Model for genetics, developmental biology, and behaviour → genetic linkage and recombination,
homeotic genes, memory and circadian rhythm genes.

Zebrafish (Danio rerio)
→ Chordata
→ Habitat: South Asia: freshwater with vegetation (rice paddies, slow rivers).
→ Diet: aquatic invertebrates, zooplankton.
Good model: transparent embryos
Developmental biology and embryogenesis: organ formation, organogenesis and disease.
Tissue repair and regeneration: regeneration of heart muscle and fins → implications for regenerative
medicine and cardiology.
Cancer research: basis of tumour development, metastasis and drug responses.
Metabolism and obesity: lipid accumulation visible in live animals.
Nanotechnology and drug delivery: delivery and toxicity of nanoparticles and drug compounds.
Drug discovery and development: high throughput bioassays.
Studying diabetes: different from rodents → induce diabetes from immersion in high glucose water,
easier to handle, less ethical issues, fluorescence imaging possible of whole organism.

House mouse (Mus musculus)
→ Chordata → mammalia
→ Habitat: grasslands and forests to urban and agricultural areas.
Highly adaptable, association with humans → colonization.
→Diet: omnivorous.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Andarta. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €8,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52355 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€8,49
  • (0)
Ajouter au panier
Ajouté