Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
gedragseconomie (behavioral economics) volledige samenvatting 2024/2025 €7,46
Ajouter au panier

Resume

gedragseconomie (behavioral economics) volledige samenvatting 2024/2025

 1 vue  0 fois vendu

Volledige samenvatting voor het (keuze)vak gedragseconomie. Aangevuld met alle lessen (en gastles) en slides uit academiejaar 2024/2025. Alle te kennen termen, onderzoeken, schema's, grafieken, ... staan erin.

Aperçu 3 sur 23  pages

  • 25 décembre 2024
  • 23
  • 2024/2025
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
millla
LES 1: STANDARD ECONOMIC MODEL

 STANDARD ECONOMIC MODEL
 Neo-classical economic model is the way most economists think about consumer welfare & choice
a) People act with full information -> full external knowledge
b) People have known preferences -> full internal knowledge
c) People choose the best option available -> rational choices
 Agents are assumed to be fully rational, and be driven purely by their self-interest
 not true: satisfice rather than maximise + information is not always available = BE
 Theories are usually normative + descriptive; this may lead to tensions if they fail descriptively
 Normative theories: tell us how we should behave to obtain a certain goal (utility max.)
 Descriptive theories: how people really behave, may (not) be the same as the normative theory

o Probability
= a number between 0 and 1 that indicates a likelihood that a particular outcome will occur,
0 means the event is impossible, 1 means it is certain
 Probability is known = RISK (bv: flipping a coin is 0,5)
 Probability is unknown = UNCERTAINTY
 the probability of all possible events sum to 1
 binary prospects with two prospects (x , y) and probability (p):
 ∼ = indifference
 ≻ = strict preference

o Expected value
= the value of each possible outcome times the probability of that outcome
= 𝐸𝑉(𝑥, 𝑝; 𝑦) = 𝑝𝑥 + (1 – 𝑝)𝑦
bv: Suppose you are planning to play at an outdoor concert. The probability of rain tomorrow is
0.30, and thus the probability of no rain is 0.70. Suppose you will make €500 if it doesn’t rain , but
only €100 if it rains: EV = (0.70) (500) + (0.30) (100) = €380

bv: You have the option to participate in a game where:
With a 50% chance you win €100. With a 30% chance you win €50. With a 20% chance you win
nothing (€0). You want to calculate the expected value of your winnings:
EV(game) =(0.5×100)+(0.3×50)+(0.2×0) =50+15+0 = € 65

o St Petersburg paradox
= A coin is tossed. If it comes up heads, you are paid €2. Then the coin is tossed again. If it comes up
heads again, you are paid €4= 22; and so on. When the coin comes up tails the game is over.
 overall people want max to pay €25 to play this gamble

 expected value is infinite:

 but still some people don’t want to play… -> expected
utility




1

, o Expected utility (a solution to the St. Petersburg paradox by Daniel Bernoulli)
= the satisfaction or pleasure a person derives from consuming a good, service, level of wealth
(ex: the first euro’s winning means more than the last ones// poor people get more satisfaction
from winning money)
 utility = If you prefer eating apples (A) to eating chocolate (C ), than U(A)=2 and U(C )=1
 choice = revealed preference : if you choose X then this “reveals” that you prefer X to Y ( X ≻ Y)

 Decreasing marginal utility: utility increases as consumption increases but at a diminishing rate =
 expected utility = 𝐸𝑈(𝑥𝑖, 𝑝𝑖)= ∑ p i U (x i )
 expected value = 𝐸𝑉(𝑥𝑖, 𝑝𝑖) = ∑ p i x i

o Certainty equivalent
= to find the sure amount of money that makes a decision maker indifferent between playing the
prospect and obtaining that amount (that’s the amount that makes you indifferent from playing or
taking the money)
=



 Economic agents in the standard economic model:
 motivated by expected utility maximization
= p(st)
 The utility is governed by selfish concerns, it does not take into consideration the utility of
other
t
= U (x i l st)
 They are Bayesian probability operators = I update my probabilities every time I receive new
info
= p(st)
 They have consistent time preferences according to the discounted utility model = I always
stick to the decision I made
t
=
 According to the standard model, individual i at time t = 0 maximises expected utility subject to a
probability distribution p(s) of the states of the world s ∈ S




2

, LES 2: HEURISTICS AND EXPECTED UTILITY PARADOXES

 HEURISTICS AND BIAS
o Definitions and introductory concepts
 heuristics = ‘Rule of thumb’ or a simple rule of behaviour by which a person solves a problem.
(bv: buying what you usually do) = mental shortcut to solve problems and make quick judgments.
 bias = Systematic suboptimal judgments that can result as a consequence of the heuristic process
 search heuristics (= complementary heuristics):
 try until aspiration level is met (satisficing)
+ eliminate by aspects that don’t meet your aspiration level
+ directed cognition: try each product and treat it as if it’s the last one
 utility and search
 preferences tell you how much utility you would get from a combination of goods and money
 to maximize the utility, you should do a search heuristic

 Bayes rule: describes the probability of an event, based on prior knowledge of conditions that
might be related to the event
= P(H|E) = [P(E|H)*P(H)] / P(E)
 P(H|E) The posterior probability: the probability of the hypothesis H being true given the evidence E.
 P(E|H) The likelihood: the probability of observing the evidence E given that the hypothesis H is true.
 P(H) The prior probability: the initial probability of the hypothesis H being true before considering the evidence.
 P(E) The marginal likelihood or evidence: the total probability of observing the evidence E, regardless of the
hypothesis

bv: As part of a clinical study, you are being tested for a rare disease, which affects 1 in 10,000
people. The test correctly detects the disease when it is present 99% of the time; it also correctly
detects the absence of the disease 99% of the time (it has 1% false positives). Imagine now the test
comes back positive; what is the probability that you indeed have the disease?
-> 𝑃(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑃(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒) × 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) + 𝑃(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒) × 𝑃(𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒)
-> P(test positive) =(0.99 x 0.0001) + (0.01 x 0.9999) = 0.010098

The posterior probability of having the disease: [(0.99x 0.0001) / 0.010098] = 0.0098 = 0.98%
 Despite the test being highly accurate, the low prevalence of the disease leads to a high
probability that the positive result is a false positive

o Heuristic 1: Representativeness
= evaluate the likelihood that object A belongs to category B, by the extent to which A
resembles characteristics of B
 The issue arising from this, is that similarity may be determined by many elements not affecting
probabilities, leading to bias: Systematic biases may therefore result from this heuristic

Bv: “John is very shy and withdrawn, invariably helpful, but with little interest in people, or in the
world of reality. He is very tidy, he has a need for order and structure, and a passion for detail”.
What is the probability that John is a) a farmer; b) a salesman; c) a librarian; d) a physician ?

 most people guess that he is a librarian
 The issue is that there are many more salesmen than librarians, this ignores the prior probability
(base rate) = the failure of Bayesian updating




3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur millla. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,46. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

50843 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,46
  • (0)
Ajouter au panier
Ajouté