WZ4: toepassingen rotationele dynamica en statica
rollen = translatie + rotatie
& 3
~ = at = 2 5 m/S zuivere
,
rotatie
dus v
op e l k
wil
punt in
gelijk
=> Var = 2 .
2,5 = 5 m/s
(a) + = RF
Forwar
=
I 27
Franco Om een
(2)
-
F + Al
(a) M
&
na
-Fixin ~
(e) + (c) evenwicht me : Fix-Fz ,
x
= m
, a) F
+A
= m, a + m, gun (30)
= 15 .
1
,
8 + 15 .
9 81
,
·
Sin (30 %
evenwicht Me :
Fir-Fr =
-maa = 100 ,
575 N
- F+r =
-
maa +
mcq
>
=
20 .
1 0 + 20 . 9 , 81
,
= 160 ,
2 N
werwicht katrol : I
=I = = F.
~ 1 , 32 kgm
(
=
S
(t) we weten : T = RF +
zou wet v .
Newton :
T = Ia =
+ MRa Fz -
F +
= m .
a
=
+
-
a = Rx (zuiver a =
m
-
rollen (
m
Fr
↳
= MRx
= Mamm (a
ta g
+
=
a =
2 .
10 = 6 , 6667 m/s2
(2) F =
+Marm = 0
,
30 .
6, 6667
, (a) looping kunnen maken
Er
7 hoogste purt :
FN ,
o
dus : minimaal FN = O 2ontv .
Newton : En +
Fz = m .
ar
7) m .
q =
m .
(R -
r)
( =
g(r r) -
Benoud v .
energie : U ,
=
Uq + Ka + Grot
↳ mg(h + r) =
mg(2r 1) +
+mu +
tw &
Frolba -mee w
=
-
= =
,
g(n r) mg(22 r) + -
+ =
-
+ +
Eva
>
-
=
=(g(n + 1) -
g(2r -
r))
= g(r r) = (gn + gr 2gk + gr)
- -
*R -
Er + -gr =
g
= m
= (R -
r) = 2 7R
,
(er)
· Behoud va n
energie K Va Ma Mot . mg(3r + 1) mar +
+mu +z m
=
: = + +
,
( v
= = g(2r + r)
zon wet v. .
Newton :
S
:[F May S S
y-richting -m
e Fur-Fz = -man Fun =
-martma () x = =
7m
7) (1)
Fur : r
= mr -Margr =
Er => [fy =
-
mar =
-
Emg
nrichting : EFx =
mar =
m.
-
-
-
m9 ~
Mm
#
2 krachtmomenten (op MM) :
bar over
stapje . () [F [F2 ·
TF = Fz . Vn -
# F .
/R-h) < m.
gem ·
TF = F .
(R -
a)
F
manne
-
-
-
botsing +
burging
I 2
behand v erhand .
o
· . v
Mm
impulsmoment energie
( = r .
p
= r mv
↑ no ? en =
[ w)
I
op manimale
hoogte : K = 0
e r h a rd .
v
impulsmoment : L = La
VG
m .
= Tw
Ew
=P
met Es =
+Me
=p = mr = m .
(t)
erhand v .
energie : Krat = Uz
(
= wi =
(m +
M)gnm
tan
="emem() ma M(M
= +
m)
=
Dus : No =
Mar 2
+ m)