Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Statistiek semester 2 VUB €4,19
Ajouter au panier

Resume

Samenvatting Statistiek semester 2 VUB

1 vérifier
 196 vues  10 fois vendu

Korte samenvatting van alle benodigdheden van theorie + wpo's van semester 2 statistiek VUB, heb juist wpo 18 niet uitgetypt. Heb dit gebruikt voor open boek examen 2020. 18/20 behaald.

Aperçu 3 sur 25  pages

  • 15 janvier 2021
  • 25
  • 2019/2020
  • Resume
Tous les documents sur ce sujet (9)

1  vérifier

review-writer-avatar

Par: dinaobsschool • 3 année de cela

avatar-seller
liesedv1
Statistiek: semester 2
4.Kansrekening de studie van het toeval
4.1 Toeval
4.1.1 Vocabulaire van de kansrekening
Toevallig: soort ordening op lange termijn

- Toevalsverschijnsel: individuele uitkomsten zijn onzeker maar er is regelmaat bij grote
herhalingen
- Waarschijnlijkheid: proportie van aantal keer dat die uitkomst zal voorkomen bij veel
herhaling
- Kans: fractie keren dat bepaalde uitkomst voorkomt in lange reeks ->relatieve frequentie
- EMPIRISCH

Deel buiten boek: Verzamelingen en combinatieleer
- Verzameling A is groepering van n elementen a1,a2,..
- Deelverzameling -> C
- Unie U en doorsnede n
- Verschil \ (a min b)
- Partitie: alle partities samen is unie, geen doorsnede
- Complement: a zonder deelverzameling b

Combinatieleer
- Permutaties: aantal volgorden kan men maken
o Alle elementen ordenen
o P!
- Combinaties: aantal deelverzamelingen kan men maken
o Combinaties van r elementen uit n verzameling
o n! / r!(n-r)!
- Variaties: aantal geordende deelverzamelingen kan men maken
o V= n! / (n-r)!

4.1.2 Over toeval
- Kans kan nooit exact worden waargenomen
- Bij bestuderen toeval moet men letten op
o Pogingen zijn onafhankelijk
o Empirisch

4.1.3 Toepassingen van de kansrekening
- Ontstaan bij casinos
- Verkeer, epidemieen,

4.2 Kansmodellen
- Kansmodel: wiskundige term voor toevalsverschijnsel, bvb de dobbelsteenen
- 2 onderdelen: mogelijke uitkomsten (S) & kans voor elke uitkomst

,4.2.1 uitkomstruimten
- Uitkomstenruimte S, sample space, verzameling alle mogelijke uitkomsten
- EAS: enkelvoudige aselecte steekproef

4.2.2 intuïtieve kans
- Gebeurtenis: verzameling uitkomsten van een toevalsverschijnsel, een uitkomst
o Bvb 5 ogen bij 2 dobbelstenen
4.2.3 basisregels voor kansen
- Kans ligt tussen 0-1
- Uitkomstruimte S = 1
- A en B zijn disjunct als ze nooit samen voorkomen
- Complement van A -> wanneer A niet optreedt
- Complementregel: 1 – P(A) = P(Ac)
- Venn-diagram, tekening met steekproefruimte S als rechthoek
- Frekwentiele definite van kans: via computer

4.2.4 toekennen van kansen : eindig aantal uitkomsten
- Elke uitkomst heeft een bepaalde kans, tussen 0 en 1, de som is gelijk aan 1
- Als ze overlappen moet je hier rekening mee houden!

4.2.5 toekennen van kansen: even waarschijnlijke uitkomsten
- Wanneer alle uitkomsten even waarschijnlijk zijn dan is de kans op een gebeurtenis, het
aantal uitkomsten in die gebeurtenis gedeeld door het totale

4.2.6 Onafhankelijkheid en de productregel
- Onafhankelijkheid: de uitkomst van een 2de ronde is niet afhankelijk van de eerste uitkomst
- P(A en B)= P(A)P(B)
- Disjunct =/= onafhankelijk

4.2.7 toepassen van kansregels
- Productregel: kans dat 1 a is en 2 b is kans a maal kans b
o Ze moeten dus onafhankelijk zijn!!!

4.3 Stochastische variabelen
- Ook wel kans variabele genoemd
- Variabele waarvan de waarde een numerieke uitkomst is van een toevalsverschijnsel
- X of Y
- Uitkomstenruimte S is lijst met mogelijke uitkomsten van stochastische variabelen

4.3.1 Discrete stochastische variabelen
- Eindig aantal mogelijke waarden
- Alle kansen zitten tussen 0 en 1 en de som is 1
- Kans histogrammen

4.3.2 Continue stochastische variabelen
- Oppervlaktes onder een kromme -> dichtheidskromme
- Continue want de waarden zijn complete intervallen
- Het verschil tussen < en =< is verwaarloosbaar bij continue

, 4.3.3 Normale verdelingen als kans verdelingen
Normale verdelingen zijn kansverdelingen. Dichtheidskrommen zijn normale krommen.

- Normaal verdeling: N(µ,σ) -> verwachting, standaardafwijking
𝑋−µ
- Gestandaardiseerde variabele: 𝑍 = 𝜎
- Standaard normale verdeling: N(0,1)
- Y1= 0 (symmetrisch)
- Y2= 3 (mesokurtisch)



4.4 Verwachting en variantie van stochastische variabelen
4.4.1 De verwachting van een stochastische variabele
- Verwachting van stochastische variabele: soort gemiddelde over mogelijke waarden van x,
rekening houden met het feit dat niet alle uitkomsten even waarschijnlijk zijn
o Het symbool is µ -> verwachting van de kansverdeling
o Verwachting van X dus µ𝑋
o We vinden het door elke mogelijke waarde maal zijn kans te doen, en al die
producten op te tellen
o DUS µ𝑋 = 𝑥1 𝑝1 + 𝑥2𝑝2 + ⋯ DUS ∑ 𝑥𝑖𝑝𝑖
o Het is een GEWOGEN gemiddelde, de kans van een bepaalde waarde weegt door
- Continue stochastische variabele: wordt weergegeven met dichtheidskromme (want
oneindig aan kommagetallen)
o Hier wordt de verwachting gevonden in het evenwichtspunt, dit geld ook bij
discrete, maar daar is er een formule om te berekenen.

4.4.2 Statistische schatting en de wet van de grote aantallen
- µ is een populatiegemiddelde, een parameter, verwachtingswaarde, gemiddelde van
mogelijke waarden, gewogen met waarschijnlijkheid waarmee ze voorkomen,
langetermijngemiddelde
- wet van de grote aantallen: steeds dichter bij gemiddelde wanneer steekproef vergroot
o dit geldt voor elke populatie met onafhankelijke waarden
- op lange termijn komen fracties van uitkomsten dicht bij kansen

4.4.3 Nadenken over de wet van de grote getallen
- wordt gebruikt door casino’s maar ook verkoop (kraampjes)
- wet van kleine getallen: we geloven dat korte series toeval verschijnselen een gemiddeld
gedrag zal tonenµ
o voorbeeld van munt gooien: bij nadenken verwacht je niet dat je lange series munt
of kop zal gooien, maar in realiteit gebeurt dit wel.
- Wanneer is een aantal groot genoeg? Hangt af van de variabiliteit.
o Hoe variabeler de uitkomsten, hoe meer pogingen nodig

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur liesedv1. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,19. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

59063 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€4,19  10x  vendu
  • (1)
Ajouter au panier
Ajouté