100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Bio-Imaging €7,49
In winkelwagen

Samenvatting

Summary Bio-Imaging

 23 keer bekeken  1 keer verkocht

A 25 page summary of the entire course based on the slides from the lectures and the course notes (booklet)

Voorbeeld 2 van de 25  pagina's

  • 31 januari 2023
  • 25
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
CVSTICHE
Bio-Imaging and Image informatics
INTRO
. Positron emission tomography (PET)  high Energy Ɣ-rays  1-2 mm Spatial reso
. Magnetic resonance imaging (MRI)  radiowaves  25-100 μm SR
. Computed tomography (CT scans)  X-rays  50-200 μm SR
. Ultrasound  high-freq sound  50-500 μm SR
. Optical Fluo Microscopy  visible, infrared light  < 1 mm SR

CHAP_3 : Concept of optics and light
. Dual nature light  p° sometimes acts like a wave(Huygens, Young)/particle(Newton)
 Particle: Photoelectric effect -> light eject electrons (only certain wavelengths, indep of Intensity)
 Wave: Young -> light between 2 // slits -> light waves interfere -> dark and light bands = diffract°




. 4 main laws optics: 1) straight propagation light. 2) independency light beams. 3) Reflect° 4) Refract°
c
. Refraction: refraction index (medium) = n= = ratio speed light (vacuum) - speed light (medium)
v
 Free space: n = 1 ; Air : n = 1.0003 ; Water : n = 1.33 ; Glass : 1.66 ; Greater n = lower speed light
 Greater/lower n = lower/greater speed of light = light ray bent toward/away the normal (nr>ni)
 Snell’s law :  Angles measured with respect to surface normal

. Specific cases (higher->smaller) :
 θi = 0°  no diffraction
 θi = θcrit  bend 90° away normal (travel btween 2 interfaces)
 θi > θcrit  total reflection

. Thin lens = ideal lens  converging/+ or diverging/- (fct° of curvature)
 Focal points F => // beams focused on F (+) ; projection of // beams focused on F (-)
 Beam pasing by center lens not diffracted ; beam passing by F becomes // to axis after lens
 F_dist depend on concavity  the more concave, the shorter F_dist
 Plane wave fronts  converging spherical wave fronts (+) / diverging spherical wave fronts(-)
=> light slower in lens medium than air => thicker parts retard light.
1 1 1
 Lens formula: + = => where p = dist_obj/lens ; q = dist_im/lens ; f = focal dist (all>0)
p q f
siz e ℑ q
 Magnification M = =
siz e obj p
 Lens system = more than 1 => im from 1st lens = obj second lens ; Mtot = Mlens1 . Mlens2 (µscope)
 Real image  im other side lens, inverted (obj after F)
Virtual image  im same side obj, not invert, bigger (obj btween F and lens)




. 2 syst of lenses in microscope = objective + eyepiece (Mtot = Mobj.Mep)

,  Objective : infinity corrected => // beam after objective => tube lense => intermediate real im
 Eyepiece (ep) : im from objective put btween F_ep and ep => big virtu im >>> obj
. Light = electromagnetic wave (2 components = E + B => amplitude = intensity, wavelength, freq, ..)
 . c= λ . ν : where c = speed light ; λ = wavelength ; ν = frequency
 E( r ,t)=E 0 . cos ¿
2 2 πc
where k = . û where 𝒖̂ = unit vector (direct° propagat°) ; ¿
λ λ
 Diffration = wave spread out after going through small holes/corners (opening±= λ ).
= deviat° geometrical optics due to obstruct° of wave front of light by obstacle/opening
 Princip of superposit° : Yres = Y1 + Y2 (constructive/destructive interferences, period important!!)
 Huygens’ wavelets (no physical basis) : Every pt on a known wave front can be treated as a pt
source of wavelets (= small spherical waves “bubbling” out of the pt) which spread out in all
direct° with a wave speed characteristic of medium. The developing wave front @ any t is the
envelope of these advancing spherical wavelets.

. Young’s double-slit interference experiment :
 Light from both slits is coherent => fixed phase relationship btween waves from both sources.
 Light from both slits same wavelength
λ
 The nth bright frange on screen is @ angle : θn = n . (n = 0,1,2,3,..)
d
 Position of bright/dark fringes : y(B)= m(sλ/a); and y(D)= (m+1/2)(sλ/a)

. Diffraction-Limited Optics => lens diameter D = large circular aperture => focused spot not a point !
 Diffract° pattern = Airy pattern = bright disk @ center (airy disk) + dark and bright rings around
 Caused by diffraction or scattering of light through specimen + circular aperture objective.
. Resolution of a microscope = dist up to which 2 small obj seen as separate entities
 smallest resolvable dist btween 2 pts cannot be smaller than half the wavelength of imaging light
 (Abbe) => Resolution ↑ if d ↓ = NA ↑ = λ ↓ (Attent° ROS)(Approx : d=200nm)

 Alpha = half-angle of the maximum cone of light that can enter/exit obj lens ; n = refraction index

. Other resolution’s criteria based on dist where :
λ
 Rayleigh => max of one Airy pattern intercepts with 1st min of other Airy pattern => d = 0.61
NA
 Full width half max => Both Airy pattern intensity profiles intercept @ points corresponding to 1⁄2
λ
of the maximum intensity @ the center of Airy disk : d = 0.51
NA
λ
 Sparrow => no dip in the intensity of image : d = 0.47
NA
1.22 λ
. Most general expression for resolut° limit => d = NA + N a
obj cd
 consider NA from lenses of condenser (condense light on speci)/objective (receive light speci)

CHAP 4 : Concept of microscope
. 4 major blocks : Lens+mirrors / objectives / light sources / Detectors
1) Mirrors : reflecting light from the lamp to eye/camera => compactness microscope
Lenses : Condenser lens => illumination cone on specimen => objective lens

2) Objectives : Primary image formation => central rôle for quality :
 Compensate for cover glass thickness variat° ; Increase effective working distance ;
Project a diffraction-limited image at a fixed plane (= intermediate image plane)
 Today : infinity corrected objectives => // beam after objective => allow to choose tube length !!

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper CVSTICHE. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd