100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Pharmaceutical Medicine

Beoordeling
4,0
(1)
Verkocht
27
Pagina's
122
Geüpload op
25-05-2023
Geschreven in
2022/2023

A summary of all lectures and the course notes together. All lecture, including the guest lectures, can be found in the summary.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 mei 2023
Bestand laatst geupdate op
30 mei 2023
Aantal pagina's
122
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

DRUG DESIGN AND DISCOVERY
INTRODUCTION

MANAGEMENT

= phase before you can start experiments
1) Strategically: is it desirable to do?
Is there an unmet medical need in the present or future?
Eg: Alzheimer has no medical treatment
Market analysis: opportunities and risk assessment
Eg: pain killers are common, so developing a new one is not that smart
2) Scientifically/technically: can it be done?
Are there (validated) models that model the disease as present in humans?
Eg. Pfizer didn’t use the right models for their Alzheimer research => compounds
didn’t work in human
Do you go for a specific target? And does hitting this target give the wanted effect?
Which compounds can you test?
Are there patent issues with other companies?
First-in-class (never used target) or fast follower (follow up on an existing medicine)?
3) Operational: can we do it?
Do you have enough staff and expertise?
What are the costs and facilities needed?

Clinical situation Non-clinical proxy
The real situation in sick human As close as we can get
Background of the pathology We can’t try medication directly on humans => use a proxy
IF too far from real situation: compound will not work when you
go into clinical phase

OBJECTIVE OF DRUG DISCOVERY AND DESIGN

GOAL: identify pharmacologically active (hit) molecules

- For which there are clear indications
- That will reach the target in sufficient amounts such that they can exert their desired effect
- Without toxicity




FLEXIBLE
MEDICINAL
CHEMISTRY




REGULATED



1

, BIOLOGY: TARGET-BASED OR PHENOTYPIC DISCOVERY

DISCOVERY AND DESIGN RESEARCH ANTITUMORAL COMPOUNDS


EXAMPLE 1: IN VITRO ANTIPROLIFERATION ASSAY (CELLS)
= assay to find antiproliferative effect of compounds
1) 96 well plate + liquid + cells
2) Cells sink to bottom => adhere to plastic
3) Proliferation of cells
4) Add compound (eg. Stelletin) at day 0
5) Assess amount of cells quantitively and qualitatively after 3 days
= add dye/ substrate => intensity ~ amount off cells

CONCLUSION: Stelletin inhibits cell proliferation


EXAMPLE 2: IN VIVO ANTITUMORAL ASSAY (ANIMAL)
1) First check compound in vitro (exp 1) => find sensitive cell line
2) Inject cell line SC into nude mice
3) Cancer cells grow on the skin
4) Give animals compound (eg. 6OTD) or vehicle
5) Asses lump and animals

CONCLUSION 1: 6OTD inhibits cell growth => in vivo antiproliferative
CONCLUSION 2: weight is the same, mice still ate => no toxic effect


EXAMPLE 3: IN VITRO KINASE ASSAY (ENZYME)




Ligand binding => R aggregation => cytosolic enzyme
activity => TYR-P of other R (autophosphorylation) Constitutive activity Continuous “on” signal => always
=> always signal transmission signal transmission

IF: continuous transmission of EGF-R => continuous growth signal => tumor cell hallmark
1) 96 well plate + kinase substrate => substrate binds irreversible to plastic
2) Add kinase + ATP + compound
3) Phosphorylation of substrate
4) Add anti-P Ab fused with HRP
5) Assess activity of tyrosine kinase
= add HRP substrate => intensity ~ kinase activity
6) Add compound which inhibits kinase => less color

CONCLUSION: the compound inhibits tyrosine kinase activity


2

, EXAMPLE 4: IN VITRO KINASE ASSAY (REPORTER CELL LINE)




Now: high throughput screening with robots => higher speed


EXAMPLE 5: IN SILICO DRUG DESI GN (PC)
1) Crystallize the protein => idea about structure
Or: co-crystallize compound of interest to see AA interactions
2) Form 3D system of AA interactions
3) Optimize structure of the compound

COMPARANCE BETWEEN PHENOTYPIC AND TARGET BASED DRUG DISCOVERY
Phenotypic = PDD (1,2) Target based = TDD (3,4,5)
Previous focus Current focus
Limited knowledge of molecular mechanisms of disease Target: protein with key role in disease pathogenesis
BUT: still able to develop innovative medicines New tools to identify targets and interacting molecules
 Current lack of success in R&D due to limited use of PDD New structure based tools to aid lead identification
BUT: current lack of success in R&D
 Are there limitations of TDD?
Empirical, holistic method based on observable characteristics of Rational, hypothesis driven, molecular method based on
an organism knowledge of patho-mechanism
Testing compounds to determine if they give phenotypic changes Fundamental biomedical research -> published data -> idea of
in mammalian cells or model organisms possible target
Target-unbiased approach High throughput possible
-> don’t need to know patho-mechanistic details MoAbs-approach possible
Increased chance on first-in-class medication Intellectualy attractive
Also in vivo: indirectly also ADME tested Apply molecular/ chemical knowledge to investigate hypothesis
No prior knowledge of MoA needed Small molecule screening AND biologic based approaches
Activity in an assay is effectively translated into disease state
No knowledge of target: how to optimize structure? Validation of the target?
Often low throughput = cell is very complicated with many reactions, it
is naïve to think that targeting one reaction
Challenge of optimizing properties of candidate drugs due to lack makes everything back to normal
of design parameters provided by MoA knowledge Relevant in larger context?
Solution to hypothesis might not be relevant for disease
pathogenesis




3

, BUT: revival of interest in PDD

- REASON 1: strong contribution to first in class development
 better to expend medicines on market
REASON 2: focus on TDD is a reason for the lack of success in current R&D
> difficult to identify specific molecular interactions from all potential molecular interactions
that contribute to the optimal MMOA
 Key biochemical nuances needed to translate molecular interaction into
pharmacological response are missed when using TDD
> PDD has no predetermined idea about the MMOA
 Aid identification of molecules with appropriate MMOA
REASON 3: can address complexity of diseases poorly understood by scientific community
REASON 4: advances in technologies for cell-based phenotypic screening
- BUT: PDD is a only a good method if the used system shares a mechanistic basis with humans
Eg. rodents develop Alzheimer, but have another mechanism as humans
BUT: many drugs defined as phenotypically found, actually used both approaches




TARGET VALIDATION
Before engaging in a new compound, you want to validate the target

- Make sure the compound will be functional (= adjust the disease)
- You want a selective inhibitor of the target protein with the right ADME characteristics
 Use CRISPR-Cas9 (KO) or siRNA (KD) to decrease expression of the target protein
- Should give reversal of pathological phenotype
IF yes -> start searching for inhibitors
- Eg use siRNA to see if the loss of a target will stop tumor proliferation

CHAIN OF TRANSLATABILITY

= ability to connect observations made at different levels of biological complexity
= translation of scientific knowledge and experimental findings from basis research into drug development
Shared mechanistic basis (= construct validity) between:
- Preclinical disease model
- Assay-readout
- Human pathophysiology
BUT: many indications have no predictive animal model or phenotypic assay that corresponds to the disease
Building the chain of translatability: disease understanding
- Knowledge at molecular level of causes and drivers of disease are crucial for PDD success
> needed to select and validate exp cellular system
- Incomplete disease understanding is a limitation for validation of phenotypic models and hypothesis
driven molecular targets


4

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
JenteDG Katholieke Universiteit Leuven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
471
Lid sinds
4 jaar
Aantal volgers
194
Documenten
26
Laatst verkocht
3 dagen geleden

3,5

41 beoordelingen

5
12
4
12
3
6
2
6
1
5

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen