100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home

Samenvatting

Samenvatting Hoofdstuk 10

 10 keer verkocht

Samenvatting H1 van algemene chemie I, gegeven door Dr. Prof. Erik Neyts

Voorbeeld 1 van de 20  pagina's

  • 14 juni 2017
  • 20
  • 2013/2014
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
ElineBiscop
Algemene chemie I

Thermochemie II: Open systemen
Inleiding
In een open systeem kan er naast warmte en arbeid ook materie worden uitgewisseld met de
omgeving.

Extensieve toestandsfuncties en open systemen
De totale differentiaal voor een open systeem
Stellen we op algemene wijze een extensieve toestandsfunctie voor met het symbool Y, en kiezen
als onafhankelijke variabelen de druk p en de temperatuur T, dan kunnen we schrijven:
𝑌 = 𝑌(𝑝, 𝑇)
Wanneer we te maken hebben met een open systeem, variëren de waarden van extensieve
toestandsfuncties eveneens met de hoeveelheden van ieder van de stoffen die in het systeem
aanwezig zijn. Drukken we deze hoeveelheden uit in mol, dan moeten we voor een systeem
bestaande uit t stoffen schrijven voor Y:
𝑌 = 𝑌(𝑝, 𝑇, 𝑛1 , 𝑛2 , … , 𝑛𝑡 )
Voor de totale differentiaal van Y moeten we dan schrijven
𝜕𝑌 𝜕𝑌 𝜕𝑌 𝜕𝑌 𝜕𝑌
𝑑𝑌 = ( ) 𝑑𝑇 + ( ) 𝑑𝑝 + ( ) 𝑑𝑛1 + ( ) 𝑑𝑛2 + ⋯ + ( ) 𝑑𝑛𝑡
𝜕𝑇 𝑝,𝑛𝑖 𝜕𝑝 𝑇,𝑛 𝜕𝑛1 𝑝,𝑇,𝑛 𝜕𝑛2 𝑝,𝑇,𝑛 𝜕𝑛𝑡 𝑝,𝑇,𝑛
𝑖 𝑗 𝑗 𝑗

Waarbij ni duidt op de partieel afgeleiden met constant houden van alle aantallen mol stof, terwijl nj
duidt op partieel afgeleiden met constant houden van alle aantallen mol stof behalve 1, namelijk de
stof waarnaar partieel afgeleid wordt.


Partieel molaire grootheden
𝜕𝑌
De afgeleiden van het type ( ) noemt men de partieel molaire waarden van Y voor de stof i.
𝜕𝑛𝑖 𝑝,𝑇,𝑛
𝑗

Met uitzondering van de partieel molaire Gibbs energie worden deze grootheden voorgesteld met
het symbool 𝑌̅𝑖 .
𝜕𝑌
𝑌̅𝑖 = ( )
𝜕𝑛𝑖 𝑝,𝑇,𝑛
𝑗

Deze grootheden zijn belangrijk bij de studie van fluide mengsels (gas- en vloeistofmengsels)
Is Y het volume, dan noemt men 𝑉̅ het molaire volume, is Y de entropie, dan noemt men 𝑆̅ de
molaire entropie.




1

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, Bancontact of creditcard en je bent klaar. Geen abonnement nodig.

Focus op de essentie

Focus op de essentie

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ElineBiscop. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €0,00. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 77234 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
Gratis  10x  verkocht
  • (0)