Universiteit Antwerpen
Bouwenergie
Derde bachelor interieurarchitectuur
Rani van Vlerken
2023-2024
0
,Inhoud
Inhoud ................................................................................................................................ 1
1. Inleiding Warmtetransport .......................................................................................... 4
1.1. Wat is Warmte? .................................................................................................... 4
1.2. Wat is Temperatuur? ............................................................................................ 4
1.3. Basisbegrippen Warmtetransport ........................................................................ 4
1.4. Warmtestroom: Warmtetransportmechanismen .................................................. 9
1.4.1. Convectie (gedwongen/ natuurlijk) .............................................................. 9
1.4.2. Straling .......................................................................................................... 9
1.4.3. Totale uitleg warmtetransportmechanismen ................................................10
2. Energieprestaties van gebouwen- Stationaire energiebalansen en de EPBD ............11
2.1. Doelstellingen .....................................................................................................11
2.2. De EPBD ..............................................................................................................11
2.3. Winsten en verliezen ...........................................................................................13
2.3.1. ENERGIEBALANS om energiebehoefte te bepalen ......................................13
2.3.2. ENERGIEBALANS om S-peil te bepalen (enkel schilgerelateerd) ................13
2.4. Berekening van het energieverbruik voor ruimteverwarming en/ of -koeling ...13
2.4.1. Graaddagen .................................................................................................14
2.4.2. Maandelijkse methode met benuttingsfactor ...............................................14
2.4.3. Grafische methode met Sankey ....................................................................14
2.4.4. Definities ......................................................................................................15
2.4.5. Ventilatieverliezen Φi ...................................................................................15
3. Energieprestaties van transparante systemen ...........................................................17
3.1. Prestaties (prestatie indicatoren) ........................................................................17
3.2. Warmtedoorgangscoëfficiënt U...........................................................................17
3.2.1. Conductie (g) + convectie (c) (veel bepalender voor U) .............................18
3.2.2. Straling .........................................................................................................18
3.2.3. Gas in de spouw ...........................................................................................18
3.2.4. Relatief belang van convectie en straling in een verticale holte ..................19
3.3. Low-e coatings ....................................................................................................19
3.3.1. Spectrale eigenschappen .............................................................................19
3.4. Typologie van beglazingen .................................................................................20
3.4.1. Kleureigenschappen low-e beglazing ..........................................................21
3.4.2. Soorten coatings ...........................................................................................21
3.4.3. Positie van de coating ...................................................................................22
3.5. Raamkaders/ spacers (niet-transparante deel) ...................................................22
3.5.1. Spacer ..........................................................................................................22
3.5.2. Beglazing met interne folies .........................................................................22
3.5.3. Vacuümbeglazing.........................................................................................23
1
, 3.6. Licht- en zontransmissie ......................................................................................23
3.6.1. Typologie van zonweringssystemen ............................................................23
3.7. Zonnewering .......................................................................................................24
3.7.1. Prestaties ......................................................................................................25
4. Thermisch comfort .....................................................................................................26
4.1. ‘Duurzaam’ bouwen .............................................................................................26
4.1.1. Warmte wordt opgeslagen of stroomt dankzij convectie, geleiding of
straling 26
4.2. Binnencapaciteit en buitencapaciteit ..................................................................27
4.3. De nadelen van EPB.............................................................................................28
4.4. Comfort als primaire toetssteen ..........................................................................28
4.4.1. Globaal thermisch comfort ...........................................................................28
4.5. Operatieve temperatuur ......................................................................................30
4.6. Gemiddelde stralingstemperatuur ......................................................................30
4.7. Luchtsnelheid ......................................................................................................31
4.8. Lokaal discomfort ................................................................................................31
4.9. Bouwfysische prestatiecriteria ............................................................................32
4.10. Thermische neutraliteit vs. gewenste thermische sensatie ..............................32
4.11. Ventilatie/luchtkwaliteit ...................................................................................33
4.12. Hygrisch comfort .............................................................................................33
4.13. Daglicht............................................................................................................33
5. Vocht ..........................................................................................................................34
5.1. Inleiding: probleemstelling ....................................................................................34
5.2. Vochttransport – fysische processen ...................................................................34
5.2.1. Diffusie .........................................................................................................35
5.2.2. Convectie .....................................................................................................35
5.2.3. Capillaire zuiging .........................................................................................36
5.2.4. Zwaartekracht/uitwendige druk ...................................................................36
5.2.5. Vochtbalans/ buffercapaciteit ......................................................................36
5.3. Oorzaken vocht ...................................................................................................36
5.3.1. Bouwvocht ....................................................................................................37
5.3.2. Hygroscopiteit van bouwmaterialen, zouten ................................................37
5.3.3. Infiltraties .....................................................................................................38
5.4. Contact met water ...............................................................................................38
5.4.1. Regendoorslag .............................................................................................38
5.4.2. Opstijgend grondvocht ................................................................................39
5.4.3. Bouwvocht ....................................................................................................40
5.4.4. Aandacht voor goede detaillering en goede uitvoering ..............................40
5.5. Vocht in de lucht ..................................................................................................41
2
, 5.5.1. Vochtige lucht ..............................................................................................41
5.5.2. Diagramma van Mollier ................................................................................42
5.5.3. Diagramma van Mollier (Denissen) ..............................................................43
5.5.4. Oppervlaktecondensatie ..............................................................................44
5.5.5. Inwendige condensatie ................................................................................45
6. Ventilatie ....................................................................................................................51
6.1. Waarom verluchten? ...........................................................................................51
6.1.1. Verontreinigingen en vocht .........................................................................51
6.1.2. Gezonde lucht: EN 13779 ..............................................................................52
6.1.3. CO2 productie mens .....................................................................................53
6.1.4. Voelbaar/ latent ...........................................................................................53
6.1.5. Ventilatievoud n : NBN D50-001 ....................................................................53
6.2. Luchtdichtheid .....................................................................................................54
6.3. Ventilatiesystemen ..............................................................................................56
6.3.1. Systeem A .....................................................................................................57
6.3.2. Systeem B .....................................................................................................57
6.3.3. Systeem C .....................................................................................................58
6.3.4. Systeem D .....................................................................................................58
6.3.5. Warmterecuperatie ......................................................................................59
3
,1. Inleiding Warmtetransport
1.1. Wat is Warmte?
Een vorm van energie: Joule ( J )
Warmtestroom= de evenwichtssituatie waar warmte naar streeft.
o = van gebieden met een hoge temperatuur naar gebieden met een lagere
temperatuur.
1.2. Wat is Temperatuur?
= maat voor hoe warm of koud iets is.
= maat voor de gemiddelde bewegingsenergie van atomen en moleculen (trillingen).
Temperatuur θ : graden Celsius °C
Thermodynamische Temperatuur T: Kelvin K
273,15 K = 0 °C
1.3. Basisbegrippen Warmtetransport
a) Warmte Q = een hoeveelheid energie in Joule ( J )
b) Warmtestroom of warmteflux Q’ of θ (Phi) = Hoeveelheid energie per tijdseenheid=
(J/s) = (W).
c) Warmtestroomdichtheid q = warmtestroom door een
oppervlak = (( J/s)/m2) of (W/m2).
d) Thermische geleidbaarheid of
Warmtegeleidingscoëfficient λ
o = Een materiaaleigenschap
o = Hoeveelheid energie die per seconde door een
vlak van 1m2 gaat bij een eenheidsdikte van 1m, per graad temperatuurverschil
Kelvin (K).
o = W/(m.K)
o Vb.λrotswol = 0.035 W/mK
o Vb.λkoper = 200 W/mK
o Opmerking:
Hogere λ= betere geleiding = slechtere isolatie
λ isolatiematerialen veel hoger indien vochtig > beschermen 6
e) Warmteweerstand R
o = Constuctie-eigenschap
o = Buffer die warmte tegenhoudt waardoor de
eenheden veranderen
o = m2 . K/ W
o = Hoe groter R, hoe groter de weerstand die
de warmtestroom ondervindt om door de
constructie te stromen en hoe beter de
materiaallaag isoleert.
o R waarde voor homogene laag:
R = d/λUI[m²K/W]
• d = dikte van de homogene laag in de richting van het warmtetransport
• λui= warmtegeleidingscoëfficiënt [W/(mK)] (Ui; U: rekenwaarde, i: voor
binnentoepassing)
o Meerdere (homogene) materiaallagen
Rc = R1 + R2 + ... + Rn
4
, Overgangsweerstanden Rsi en Rse (m2 . K/W)
o S= surface, i= interior, e= exterior
Meer convectie aan de buitenkant door wind dan aan de binnenkant.
Straling van de zon is ook anders dan de straling van een muur.
o = Om straling en convectie in rekening te brengen.
o = Afhankelijk van de richting van warmtestroom.
o Rsi = 1/hi = overgangscoëfficient binnen
o Rse = 1/ he = overgangscoëfficient buiten
hi = warmteovergangscoëfficiëntdoor convectie en straling tussen het
binnenoppervlaken de binnenomgeving [W/(m²K)]
he = warmteovergangscoëfficiëntdoor convectie en straling tussen het
buitenoppervlaken de buitenomgeving [W/(m²K)]
De Rse-waarde blijft meestal hetzelfde bij verschillende constructies.
De Rsi-waarde verwschilt naarmate de verschillende constructies.
Richting van de warmtestroom
Opwaarts Horizontaal (*) Neerwaarts
Rsi (m2 . K/W) 0,10 0,13 0,17
Rse (m2 . K/W) 0,04 0,04 0,04
(*): Geldig voor een warmtestroomrichting die niet meer dan +/- 30°C afwijkt van het
horizontaal vlak.
Warmteweerstand van een luchtspouw
o = geen vaste stof
o 3 opties:
1. Niet geventileerd
2. Matige geventileerd
3. Sterk geventileerd
1. Samengestelde wand= ΣRn
R = warmteweerstand van een uit homogene lagen samengestelde wand [m²K/W]
2. Niet geventileerde luchtlaag
Warmteweerstand van ongeventileerde luchtlagen begrensd door oppervlakken met
hoge emissiviteit (gewone gevallen)
Dikte d van de Richting van de warmtestroom
luchtlaag (mm) Opwaarts Horizontaal (*) Neerwaarts
0<d<5 0,00 0,00 0,00
5≤d<7 0,11 0,11 0,11
7≤d<10 0,13 0,13 0,13
10≤d<15 0,15 0,15 0,15
15≤d<25 0,16 0,17 0,17
25≤d<50 0,16 0,18 0,19
50≤d<100 0,16 0,18 0,21
100≤d<300 0,16 0,18 0,22
300 0,16 0,18 0,23
(*) voor warmtestroom die niet meer dan +/- 30° afwijkt van het horizontaal vlak
5
,3. Matig geventileerde luchtlaag
o Warmteweerstand uit de tabel halveren want er is weel convectie.
o = een luchtlaag waarin beperkte luchtstroming uit de buitenomgeving mogelijk
is.
o = het geval indien de totale oppervlakte van de ventilatieopeningen voldoet aan
de volgende voorwaarden:
o > 500 mm2 maar ≤ 1500 mm2 per m lengte (verticale luchtlagen)
o > 500 mm2 maar ≤ 1500 mm2 per m 2 luchtlaag (horizontale luchtlagen)
4. Sterk geventileerde luchtlaag
o We schrappen de weerstand van de buitenlaag, alles dat zich langs de buitenkant
bevindt.
o De totale warteweerstand wordt dus berekerend door de som van de weerstand
van elke luchtlaag, tot de buitenste. Rse wordt vervangen door Rsi.
o = het geval indien de totale oppervlakte van de ventilatieopeningen voldoet aan
de volgende voorwaarden:
o > 1500 mm2 per m lengte (verticale luchtlagen)
o > 1500 mm2 per m 2 luchtlaag (horizontale luchtlagen)
5. Niet (of gedeeltelijk) homogene wand (Vb.houtskelet)
o Het rekenkundig gemiddelde wordt toegepast.
o De totale warmteweerstand RT wordt bepaald
als het rekenkundig gemiddelde van de boven-
en onderwaarde van de warmteweerstand:
𝑅𝑅′ +𝑅𝑅"
o 𝑅𝑅𝑇𝑇 = 𝑇𝑇 𝑇𝑇 m2K/W
2
o De boven -en onderwaarde kunnen brekend
worden door de oppervlake constructie op te
delen in secties en lagen. De combinatie van
deze secties en lagen zorgt voor thermisch
homogene delen (Vb. Sectie a en laag 1 vormen
samen een homogeen deel a1).
R’T=bovenwaarde van de warmteweerstand(=1/(opp. gewogen U-
waarde))
Met oppervlaktes Aa, Ab, Ac, Ad in tekening
R’’T= onderwaarde van de warmteweerstand (=Rsi+Rc+Rse
met 1/Rc is som van 1/R voor elke laag opp. gewogen (lagen 1, 2, 3
in tekening)
6
,Niet-homogene laag: voorbeeld
Spantendak of houtskeletwand
o 𝛼𝛼 = 10% hout
o 𝛽𝛽 = 90% isolatie
o d = 0,15 m
o Gaat 10% van de warmte door het hout en 90% door de isolatie? → NEEN !!!
Reden: Hout en isolatie hebben een verschillende warmtegeleidingscoëfficiënt
o λhout = 0,18 W/mK > λisolatie = 0,04 W/mK
In verhouding met het oppervlakteaandeel gaat er meer warmtetransport door het
hout
Aandeel houtsectie in totale warmtetransport > 10% !
o Berekenen via bouwknopensimulatie of als laag met een equivalente R
f) Warmtedoorgangscoëfficiënt U
o = Van een constructie
o = 1/Rtot
o = W/(m2 . K)
o = De hoeveelheid warmte die door een constructie gaat per seconde (s) per
virekante meter (m2) per graad temperatuurverschil (K).
1. Vensters (en deuren), een geval apart
o U totaal= U waarde kozijn, U waarde glas & U waarde
raam.
o Berekend met een formule waarbij l in rekening wordt
gebracht.
o = lengte rond het glas
o = lijnkoudebrug
dus warmteverlies
Uf = Warmtedoorgang van de
raamkader; Af= Oppervlakte van de
raamkader.
Ug= Warmtedoorgang van het glas;
Af= Oppervlakte van het glas
¥g= Koudebrug rondom het glas;
Lg= Lengte van de koudebrug
7
,g) Warmteverliescoëfficiënt (door transmissie) HT
o W/K
o HT= totale
warmteverliescoëfficiënt
door transmissie [W/K]
o HU = warmteverliescoëfficiënt door transmissie via aangrenzend onverwarmde
ruimte (AOR) [W/K]
o HG = warmteverliescoëfficiënt door transmissie via de grond en via elders en
kruipruimten [W/K]
o HD= warmteverliescoëfficiënt door transmissie direct naar de buitenomgeving
[W/K]
HD= ∑Ai*Ui
Ai = oppervlakte van bouwelement i van de bouwschil [m²]
Ui = warmtedoorgangscoëfficiënt van bouwelement i [W/m²K]
Bepaling van het verliesoppervlak AT
o Scheidingsconstructies die deel uitmaken van AT;
in direct contact met de buitenomgeving (groen)
in contact met de grond, kelder of kruipruimte (blauw)
Scheidingsconstructies in contact met met Aangrenzend Onverwarmde
Ruimte(n) AOR (geel) Vb. Veranda
o Scheidingsconstructies die GEEN deel
uitmaken van het verliesoppervlak AT;
In contact met Aangrenzend Verwarmde
Ruimte(n) (AVR)(rood)
1) Conventies Warmteverliesoppervlak AT
Oppervlaktebepaling AT [m²]
o AT [m²] = som van oppervlaktes van
scheidingsconstructies tussen beschermd volume en de buitenomgeving,
Aangrenzend Onverwarmde Ruimten, de grond, kruipruimten en onverwarmde
kelders
Schildelen: buitenafmetingen
Vensters en deuren: dagmaten
Wanden binnen beschermd volume: binnenafmetingen (bv scheimuren)
8
, 2) Conventies Beschermd Volume V
Volumebepaling V [m³]
o Beschermd volume (BV) op basis van buitenafmetingen
o Dikte van binnenmuren en vloeren niet in mindering
o V = volume afgebakend door het totale warmteverliesoppervlak en eventuele
gemene muren (scheidingswanden tussen twee beschermde volumes) [m³]
Scheidingswanden tussen 2 BVs:
o Behoren voor de helft aan aangrenzend Beschermd Volume (meten op de
scheilijn)
o Maken geen deel uit van AT
Volume BV zeer nauwkeurig berekenen!
o Steeds buitenmaten gebruiken (uitzondering:
gemene muren = hartlijn)
Aandachtspunten
o Afbakening BV
o Aansluitingen
Maatvoering EPB ≠ Maatvoering architectuurplan
1.4. Warmtestroom: Warmtetransportmechanismen
a) Geleiding/ conductie= doorgeven van bewegingsenergie aan aangrenzende deeltjes
(in vaste stoffen).
b) Convectie= meevoeren van warmte door een stromend fluïdum (in gassen/
vloeistoffen).
c) Straling= uistraling van warmte in de vorm van elektromagnetische golven. De
hoeveelheid ‘warmte’ die uitgestraald wordt, is afhankelijk van de temperatuur van
het voorwerp. (Geen medium nodig).
1.4.1. Convectie (gedwongen/ natuurlijk)
o Ten gevolge van de verschillende densiteit omwille van
natuurverschil.
o = Laminaire luchtstroom
o = In één richting
o Door wind of door ventilator.
o = Turbulente luchtstroom
o = chaotische stroming
1.4.2. Straling
De meeste niet-metaalachtige bouwmaterialen vertonen een emissiefactor of
emissiviteit ε = 0,85 à 0,95.
o = oppervlakte materiaal die bepaalt hoeveel warmte het oppervlak kan
uitstralen= zwarte straler (theoretisch).
Doordat niet-edele metalen veel gaan reflecteren, vertonen ze een veel geringere
stralingsuitwisseling, ε = 0,026 – 0,070
9