A priori – judgmeiton are nidepeideit tf tur experneiceon.
A posteriori – judgmeiton are made baoned ti experneiceon aid tbonervaition.
Syntheti – judgmeiton ni whnch ontmethnig non added tt the ctiteit tf kitwledge.
Analyti – judgmeiton that merely ontate what non already kitwi, ftr example ‘Gtld non a yelltw metal’.
Prtlegtmeias
Ii hnon Prtlegtmeia Kait non ftcuonnig ti the queoniti whether onuch a thnig aon metaphyonncon non ptononnble. He aonkon
hnmonelf nf nt non a oncneice, why cai’t nt get uinveronal aid laoniig apprtval, lnke tther oncneiceon? If nt non itt, what
eiableon nt tt gt ti gnvnig ntonelf anron wnth nton preteice tf benig a oncneice keepnig mei’on mnidon ni onuonpeice wnth
htpeon that iever dne but are iever fulflled?
Davnd Hume’on atack ti metaphyonncon waon mtre decnonnve ftr nton fate thai aiy tther eveit onnice the Eononayon tf
Ltcke aid Lenbinz. Hume’on prnmary ontariiggptnit waon a onnigle nmptrtait metaphyonncal cticept, iamely that tg
the ctiieciti tf cauone wnth effect (nicludnig dernvaive cticepton lnke thtone tf ftrce aid aciti aid ont ti).
Hume challeiged reaonti thuons
Explani tt me what eiitleon ytu tt thnik there ctuld be a thnig x onuch thats gnvei that there non x, there
muont ieceononarnly alont be ontmethnig elone y – ftr that’on what the cticept tf cauone onayon.
He onhtwed beytid queoniti that non ctmpletely nmptononnble ftr reaonti tt have – ni ai a prntrn way aid purely
thrtugh cticepton wnth it niput frtm experneice – the thtught tf onuch a uinti tf x wnth y becauone the thtught
tf onuch a uinti nicludeon the thtught tf ieceononnty. We caiitt at all onee why, gnvei that tie thnig exnonton, ontme
tther thnig ieceononarnly muont exnont, tr htw the cticept tf onuch a ctiieciti ctuld arnone a prntrn. What the
nmagniaiti dnd acctrdnig tt Hume, waon tt ctionnder certani oneionegnmpreononntion that were related tt tie
aitther by the law tf aonontcnaiti – ont that afer experneicnig maiy F nmpreononntion ftlltwed by G tieon, ytu get
nitt the habnt tf expeciig a G wheiever ytu experneice ai F, the habnt bectmnig ontrtig eitugh ont that aiy
iew experneice tf ai F ctmpelon ytu tt expect a G. He niferred that reaonti caiitt ftrm a thtught tf the ftrm
x is necessarily and objectiely connected with y, tr evei wnth the general thtught tf that knid tf ctiieciti.
Hume had iever caont dtubt ti the prtptonniti that the cticept tf cauone non prtper, uoneful aid evei
nidnonpeionable ftr tur kitwledge tf iature, that waoni’t ni queoniti. What waon ni queoniti waon whether reaonti
ctuld thnik that cticept a prntrn. If nt ctuld, the cticept tf cauonaiti wtuld be the onturce tf ai niier truth –
truthon ctmnig juont frtm ntonelf, itt frtm aiythnig tutonnde nt gnvei thrtugh experneice – ont that nt ctuld be
applned tt thnigon tther thai merely the tbjecton tf experneice. That waon Hume’on prtblem. He waoni’t challeignig
tur nidnonpeionable ieed ftr the cticept tf cauone, but merely aonknig what nton trngni non.
The cticept tf the cauonegeffect ctiieciti non far frtm benig the tily ndea by whnch the uiderontaidnig haon a
prntrn thtughton abtut the ctiiecition tf thnigon. Oi the ctitrary, metaphyonncon ctionnonton purely tf onuch cticepton
(tf the ctiiecition tf thnigon).
Preamble on the special features of all metaphysical knowledge
A prntrn kitwledge non baoned ti pure uiderontaidnig aid pure reaonti. Mathemaicon aionwer tt that deoncrnpiti.
Tt mark tff metaphyonncon frtm mathemaicon aon well aon frtm empnrncal eiqunrneon, we’ll have tt call nt pure
phnltontphncal kitwledge.
, A prntrn judgemeiton cai be dnvnded nitt twt grtupon, acctrdnig tt thenr ctiteit (1) thtone that merely onpell tut
what’on already there, addnig itthnig tt the ctiteit tf the kitwledge, aid (2) thtone that add ontmethnig aid
eilarge the gnvei kitwledge. We cai call (1) aialyic judgemeiton aid (2) onyitheic.
The ctmmti prnicnple tf all aialyic judgemeiton non the law tf ctitradnciti. The prtptonniti ‘Every btdy non
exteided’ non equnvaleit tt ontmethnig tf the ftrm ‘Everythnig that non F aid exteided non exteided’, ont that tt
deiy nt wtuld be tt onay that ontmethnig non F aid exteided aid itt exteided, whnch non ai tutrnght ctitradnciti.
The law tf ctitradnciti, whnch onayon that it ctitradnciti non true, thuon uiderlneon the truth tf the aialyic
prtptonniti that all btdneon are exteided. St all aialyic prtptonnition are a prntrn judgemeiton, evei thtone that
ctitani empnrncal cticepton aon dteon the judgemeit ‘Gtd non yelltw metal’. I muont have experneice nf I am tt have
the cticepton tf gtld, tf yelltw aid tf metal; but tt kitw that gtld non a yelltw metal I ieed it further
experneice; all I ieed non tt aialyze my cticept tf gtld, whnch ctitanion the cticept tf benig a yelltw metal.
Syitheic judgemeiton ieed a dnffereit prnicnple frtm the law tf ctitradnciti. Stme onyitheic judgemeiton cai
be kitwi tily a ptonterntrn, tther onyitheic judgemeiton have a prntrn certanity, aid trngniate ni pure
uiderontaidnig aid reaonti. Nt onyitheic judgemeit cai ctme frtm the law tf ctitradnciti altie. Such
judgmeiton muont ctiftrm tt that prnicnple, but they cai’t be deduced frtm nt.
Ftur knidon tf onyitheic judgmeiton wnll be ndeiifed. They are all onyitheic – itie tf them cai be eontablnonhed
merely by aialyznig cticepton – three tf the ftur knidon cai be learied a prntrns
1) Judgements of experience are alwayon onyitheic, becauone nt wtuld be abonurd tt gt tt experneice whei
the judgmeit cai be dernved purely frtm my cticept. That everybtdy non exteided non a prtptonniti that
htldon a prntrn. Ii the cticept tf btdy I already have all that I ieed ftr judgmeit.
2) Mathematcal judgments are all, wnthtut excepiti, onyitheic. It muont be btrie ni the mnid that
mathemaical prtptonnition are alwayon a prntrn judgmeiton, itt empnrncal tieon. They carry ieceononnty
wnth them, aid that cai’t be learied abtut frtm experneice. I cai aialyze my cticept tf the uiniig
tf onevei aid fve aon ltig aon I pleaone – I onhall iever fid 12 ni nt. I have tt gt tutonnde theone cticepton aid
add the 5 gnvei tt the cticept tf 7. Arnthmeical prtptonnition are alwayon onyitheic. Ntr non aiy prnicnple
tf pure getmetry aialyic. That a ontranght lnie non the onhtrteont path betweei tt ptnit non a onyitheic
prtptonnition. Ftr my cticept tf ontranghtieonon ctitanion itthnig havnig tt dt wnth quaiity (nt non a purely
qualntaive cticept) ont nt caiitt ctitani the thtught tf what non onhtrteont (non quaiitaive).
Pure mathemaical kitwledge dnfferon frtm all tther a prntrn kitwledge ni thnons nt iever prtceedon frtm
cticepton, but non alwayon achneved by ctiontruciti tf cticepton.
Hume onand pure mathemaicon ctitanion tily aialyic prtptonnition, but metaphyonncon ctitanion a prntrn
onyitheic prtptonnition. Ntw thnon waon a great mnontake, whnch nifected hnon whtle onyontem tf thtught. If
he hadi’t made thnon mnontake, he wtuld have takei hnon queoniti abtut the trngni tf tur a prntrn
onyitheic judgmeiton tt ctver itt tily metaphyonncon but alont mathemaicon. He had ttt much nionnght tt
baone mathemaicon ti mere experneice. He wtuld have onpared metaphyonncon frtm the vnle mnontreatmeit
tt whnch he onubjected nt, becauone that atack wtuld have hnt ti mathemaicon aon well, whnch Huma
cai’t have waited tt dt.
3) Natural science alont ctitanion onyitheic judgmeiton that cai be kitwi a prntrn, ftr examples
Ii all chaigeon ni the phyonncal wtrld the quaiity tf mater remanion uichaiged.
Whei tie btdy ctllndeon wnth aitther, aciti aid reaciti muont alwayon be equal.
Clearly theone are itt tily ieceononary aid a prntrn ni trngni but are alont onyitheic. The front onayon that the
tttal amtuit tf mater ni the uinverone iever chaigeon, whnch non tt onay that mater non permaieit.
Thniknig that mater non permaieit noni’t lnke thniknig that wtmei are female tr that igeron are ainmalon.
Ii judgnig that mater non permaieit, thereftre, I gt beytig the cticept tf mater ni trder tt add tt nt
ontmethnig that I dndi’t thnik ni nt. St nt non onyitheic. It non a prntrn becauone tf the pure part tf iatural
oncneice.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper bdkfilo1998. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.