100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Test_bank_Cal €12,21
In winkelwagen

Tentamen (uitwerkingen)

Test_bank_Cal

 0 keer verkocht
  • Vak
  • Calculus
  • Instelling
  • Calculus

Lecturer: Approved by: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNIVERSITYOFTECHNOLOGY VNUHCM FACULTYOFA...

[Meer zien]

Voorbeeld 4 van de 58  pagina's

  • 27 augustus 2024
  • 58
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Calculus
  • Calculus
avatar-seller
Lecturer: Approved by:



.................................................................................................................

Semester/ Academic year 221 2022-2023
FINAL EXAM
Date 26 December 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 1
VNUHCM Course ID MT1003
FACULTY OF AS Duration 1234 100 mins Question sheet code
Intructions to students: - There are 14 pages in the exam
-This is a closed book exam. Only your calculator is allowed. Total available score: 10.
-For multiple choice questions, you get 0.5 for a correct answer, loose 0.1 for a wrong answer,
no deduction unanswered questions. You choose a correct answer with a tolerance of 0.005 for each question.
-At the beginning of the working time, you MUST fill in your full name and student ID on this question sheet.
-All essential steps of calculations, analyses, justifications and final results are required for full credit.
Any answer without essential calculation steps, and/or analyses, and/or justifications will earn zero mark.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)
Z x
Question 01. [L.O.1.1] Identify all local extrema of f ( x ) = (t2 − 3t + 2)dt.
0
A None of them B (1, 5/6) and (2, 2/3) C (1, 7/6) and (2, 2/3)
D (1, 5/6) E (1, 5/6) and (2, 3/2)
Z x
Question 02. [L.O.1.2] Find the maximum and minimum values of f ( x ) = (3t2 − 6t − 9)dt on the interval
−2
[−2, 2].
A f max = 6; f min = −21 B None of them C f max = 7; f min = −20
D f max = 7; f min = −21 E f max = 6; f min = −20

Zx
πt2
 
Question 03. [L.O.1.2] If f ( x ) = sin dt, find all absolute extrema of f on the interval [0, 3].
2
0 √ √
A f max = f (0); f min = f (2) B f max = f ( 2); f min = f ( 8) C None of them
√ √ √
D f max = f ( 2); f min = f ( 6) E f max = f ( 2); f min = f (2)

Zx
Question 04. [L.O.1.2] If f ( x ) = (4t3 − 4t)dt, find all absolute extrema of f on the interval [−1, 2].
−1
A f max = 9; f min = 1 B f max = 9; f min = 0 C f max = 8; f min = 1
D None of them E f max = 8; f min = 0
3
Zx
dt
Question 05. [L.O.1.1] Find the derivative of the function f ( x ) = √ ·
2 + t3
arctan x


Stud. Fullname: Page 1/14 - Question sheet code 1234

, 2x2 1 1 3x2 1 1
A √ −p · B √ −p ·
2+x 9 2 + (arctan x ) 1 + x2
3 2+ 4+x9 1 + x2
(arctan x )3
3x 2 1 1 3x 2 1 1
C √ −p · D √ −p ·
2 + x9 3 + (arctan x )3 1 + x2 2 + x9 2 + (arctan x )3 1 + x2
E None of them

Z x
sin
p Zy π
Question 06. [L.O.1.1] If f ( x ) = 1 + t2 dt and g(y) = f ( x )dx, find A = g′′
6
√ √0 √ 0

11 17 13 15
A A= B A= C A= D None of them E A=
4 4 4 4
Zx
d √
Question 07. [L.O.1.1] If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
sin x cos x cos x sin x
A A= √ B A= √ C None of them D A= √ E A= √
3 x 2 x 3 x 2 x
Z x
Question 08. [L.O.1.1] Find all values of c such that f (t)dt = x2 + x − 2.
c
A c = −2 B None of them C c = 1 or c = −2 D c = −2 or c = 0 E c=1
Z x
Question 09. [L.O.1.1] Find the approximation of c such that f (t)dt = x3 + 3x2 + 2x − 3.
c
A None of them B c = 0.7717 C c = 0.8717 D c = 0.6717 E c = 0.9717

t2
Z x
Question 10. [L.O.1.2] On what interval is the curve y = dt concave downward?
0 t2 + t + 2
A (−2, 0) B None of them C (−4, 0) D [−2, 0] E [−4, 0]

Question 11.  π [L.O.2.1] Find the antiderivative F ( x ) of the function f ( x ) = sin x + cos x which satisfies the
condition F = 2.
2
A F ( x ) = − cos x + sin x + 3 B F ( x ) = − cos x + sin x + 1 C F ( x ) = − cos x + sin x − 3
D F ( x ) = − cos x + sin x − 1 E None of them

Question 12. [L.O.2.1] If F ( x ) is an antiderivative of the function f ( x ) = ex + 2x which satisfies the condition
3
F (0) = · Find F ( x ).
2
1 1
A F ( x ) = ex + x2 + B F ( x ) = 2ex + x2 − C None of them
2 2
1 5
D F ( x ) = ex + x2 − E F ( x ) = ex + x2 +
2 2
1 f (x)
Question 13. [L.O.2.1] If F ( x ) = is an antiderivative of the function · Find the antiderivative of the
2x2 x

function f ( x ) ln x.
 
ln x 1 ln x 1
Z Z
′ ′
A f ( x ) ln x dx = 2 + 2 + C B f ( x ) ln x dx = − 2
+ 2 +C
x x   x 2x 
ln x 1 ln x 1
Z Z
C f ′ ( x ) ln x dx = − 2
+ 2 +C D f ′ ( x ) ln x dx = − 2
− 2 +C
x x x x
E None of them

1 f (x)
Question 14. [L.O.2.1] If F ( x ) = − 3
is an antiderivative of the function · Find the antiderivative of the
3x x
function f ′ ( x ) ln x.


Stud. Fullname: Page 2/14 - Question sheet code 1234

, ln x 1
Z
A None of them B f ′ ( x ) ln x dx =
3
− 5 +C
x 5x
ln x 1 ln x 1
Z Z
C f ′ ( x ) ln x dx = − 3 + 3 + C D ′
f ( x ) ln x dx = − 3 − 3 + C
x 3x x 3x
ln x 1
Z
E f ′ ( x ) ln x dx = 3 + 3 + C
x 3x
Question 15. [L.O.2.1] If F ( x ) = x2 is an antiderivative of the function f ( x )e2x . Find the antiderivative of the
function
Z
f ′ ( x )e2x . Z

A 2x 2
f ( x )e dx = −2x + 2x + C B f ′ ( x )e2x dx = x2 − 2x + C
Z
C f ′ ( x )e2x dx = −2x2 − 2x + C D None of them
Z
E f ′ ( x )e2x dx = − x2 + x + C

ln x
Question 16. [L.O.2.1] If F ( x ) is an antiderivative of the function f ( x ) = · Calculate I = F (e) − F (1).
x
1 1
A I=2 B I= C None of them D I= E I=e
2 e
Question 17. [L.O.2.1] Find the function f given that the slope of the tangent line to the graph of f at any point
ln x
( x, f ( x )) is f ′ ( x ) = √ and that the graph of f passes through the point (1, 0).
x
√ √ √ √ √ √
A f ( x ) = 3 x. ln x + 4 x + 4 B f ( x ) = 2 x. ln x − 3 x + 4 C f ( x ) = 2 x. ln x − 4 x + 4
√ √
D None of them E f ( x ) = 3 x. ln x − 4 x + 4

Question 18. [L.O.2.1] Find the function f given that the slope of the tangent line to the graph of f at any point
( x, f ( x )) is f ′ ( x ) = xe−3x and that the graph of f passes through the point (0, 0).
xe−3x e−3x 1 xe−3x e−3x 1
A f ( x ) = −2 − + B f ( x ) = −2 − + C None of them
3 9 9 3 3 9
xe − 3x e − 3x 1 xe − 3x e − 3x 1
D f (x) = − − + E f (x) = − − +
3 3 9 3 9 9
Z π Z π
2 2
Question 19. [L.O.1.1] If f ( x ) dx = 5, then calculate I = [ f ( x ) + 2 sin x ] dx.
0 0
π
A 3 B 7 C None of them D 5+ E 5+π
2
Z 2 Z 2 Z 2 h i
Question 20. [L.O.1.1] If f ( x ) dx = 2 and g( x ) dx = −1, then calculate I = x + 2 f ( x ) − 3g( x ) dx.
−1 −1 −1
11 7 17 5
A I= B I= C I= D None of them E I=
2 2 2 2
Z 6 Z 2
Question 21. [L.O.1.1] If f ( x )dx = 12, then calculate I = f (3x )dx
0 0
A I=4 B I=6 C I = 36 D I=2 E None of them

Z1  
1 1
Question 22. [L.O.1.1] If − dx = a ln 2 + b ln 3 where a, b are integers. Which statement is al-
x+1 x+2
0
ways true?
A a+b = 2 B a + 2b = 0 C a + b = −2 D a − 2b = 0 E None of them

Question 23. [L.O.1.1] If the function f ( x ) has continuous derivative on [0, 1] and satisfies the condition 2 f ( x ) +
√ Z 1
3 f (1 − x ) = 1 − x2 then calculate f ′ ( x ) dx.
0




Stud. Fullname: Page 3/14 - Question sheet code 1234

, 3 1
A I=0 B I=1 C I= D None of them E I=
2 2
Question 24. [L.O.1.1] If the function f ( x ) has continuous derivative on [0, 1] and satisfies the condition f (0) =
Z 1h i
x ′
f (1) = 1, and e f ( x ) + f ( x ) dx = ae + b, where a, b are integers. Calculate Q = a2018 + b2018 .
0
A Q=0 B Q=2 C None of them D Q = 22017 + 1 E Q = 22017 − 1

Question 25. [L.O.1.1] If the functions f and g have continuous derivative on [0, 2] and satisfies the condition
Z 2 Z 2 Z 2h i′
f ′ ( x ) g( x ) dx = 2, f ( x ) g′ ( x ) dx = 3, then calculate f ( x ) g( x ) dx.
0 0 0
A I=6 B None of them C I=0 D I=5 E I=1

Question 26. [L.O.1.1] Suppose f ′′ is continuous on [1, 3] and f (1) = 2, f (3) = −1, f ′ (1) = 2, and f ′ (3) = −1.
Z3
Evaluate I = x f ′′ ( x )dx.
1
A I = −1 B I=1 C I = −2 D None of them E I=0
Z x
f (t)
Question 27. [L.O.1.1] If the functions f is continuous on [ a, +∞) ( a > 0) and satisfies the condition dt +
√ a t2
6 = 2 x, then calculate f (4).
A f (4) = 8 B None of them C f (4) = 2 D f (4) = 16 E f (4) = 4
Z x2
Question 28. [L.O.1.1] If the functions f is continuous on [0, +∞) and satisfies the condition f (t) dt =
  0
1
x. sin(πx ), then calculate f .
  4     
1 π 1 π 1 1 1
A f = 1+ B f =− C None of them D f = E f =1
4 2 4 2 4 2 4
Question 29. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
1 √
2
(newton) acts on it. How much work is done in moving it from x = 1 to x = 2 3 − 1.
x + 2x + 5
π 4π
A W= B W=2 C None of them D W= E W = 2π
24 3
Question 30. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
1 13
√ (newton) acts on it. How much work is done in moving it from x = to x = 9.
9 + 8x − x 2 2
π 2π π 4π
A W= B W= C W= D None of them E W=
4 3 3 3
Question 31. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
5x2 + 20x + 6
(newton) acts on it. How much work is done in moving it from x = 3 to x = 5.
x ( x + 1)2
2 × 56 2 × 56 2 × 56
     
3 3 5
A W = + 2 ln B W = + ln C W = + ln
4 37  4 37 4 37
6

1 2×5
D W = + ln E None of them
4 37
Question 32. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
2x2 − 5x + 2
(newton) acts on it. How much work is done in moving it from x = 1 to x = 5.
x3 + x
5π 5π 9π
A W = 3 ln 5 − 5 arctan 5 + B W = 2 ln 5 − 5 arctan 5 + C W = 3 ln 5 − 5 arctan 5 +
4 4 4

D W = 2 ln 5 − 5 arctan 5 + E None of them
4

Stud. Fullname: Page 4/14 - Question sheet code 1234

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, Bancontact of creditcard en je bent klaar. Geen abonnement nodig.

Focus op de essentie

Focus op de essentie

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper supergrades1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €12,21. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 70001 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€12,21
  • (0)
In winkelwagen
Toegevoegd