100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary chapter 3 €6,49   In winkelwagen

Samenvatting

Summary chapter 3

 9 keer bekeken  0 keer verkocht

Summary of 5 pages for the course applied multivariate data analysis at EUR (chapter 3 notes)

Voorbeeld 2 van de 5  pagina's

  • 27 januari 2022
  • 5
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
oliviaward
Chapter 3: The Phoneix of Statistics

Misconceptions about statistically significant results
- Misconception 1: A significant result means that the effect is important
- Very small and unimportant effects can be statistically significant with large
amounts of data while important and large effects may not be stat sig with small
amounts of data
- Misconception 2: A non-significant result means that the null hypothesis is true
- Non-sig result allows us to reject the alternative hypothesis but doesn’t tell us
that the effect size is 0
- Misconception 3: A significant result means that the null hypothesis is false
- Null hypothesis represents a statement of probability such as ‘if the null
hypothesis is correct, then this test statistic is highly unlikely’
Why does the NHST fail?
- It tries to test which of the null and alternative hypotheses are correct, but the
significance of the test provides no evidence about either hypothesis
- It encourages all or nothing thinking where if p<.05 then an effect is significant but if
p>.05 it is not
- NHST is influenced by the intentions of the scientist
- Empirical probability (long-run probability) is the proportion of events that have
the outcome in which you’re interested in an indefinitely large collective of events
- NHST is based on long-run probabilities with the alpha set at .05 probability of a
type 1 error so that across repeated identical experiments the probability of
making a type 1 error is 0.05; type 2 error is also a long run probaility
- For both the probability is not what is probable for every individual but for
what happens in the long run
- The p-value is the probability of getting a test statistic at least as large as the one
observed relative to all possible values of t(null) from an infinite number of
identical replications of the experiment
- Two different intentions for collecting data: collectin a certain number of data
points and collecting data up until a certain time point
- These influence how the p-values
Publication Bias
- Current incentive structure in science in invidiaulistic rather than collective where
individuals are rewarded for publishing and getting funding
- Publication bias: significant findings are about 7x more likely to be published
- Reviewers and editors tend to reject non-significnat results
- Researchers may selectively report their results to focus on sig findings
- Researcher degrees of freedom: researcher has many decisions to make when
designing and analysisng and they can be misused to exclude cases that make the
results non-signfincat
P-hacking and harking

, - P-hacking: researcher degrees of freedoms that lead to the selective reporting of
significant p-values
- Harking: hypothesizing after the results are known
- Both p-hacking and harking you are not controlling the type 1 error rate
- P-curve: number of p-values you would expect to get for each value of p
- Smaller p-values are more frequently reported than larger non-significant ones
EMBERS
- Effect Sizes
- Meta-analysis
- Bayesian Estimation
- Registration
- Sense
Sense
- 6 principles for using NHST
- You can use the value of p (not whether it is above or below an arbitrary
threshold) to indicate how incompatible the data are with the null hypothesis
- Smaller ps indicate more incompatibility with the null
- Don’t interpret p-values as probability that the hypothesis is true and not that data
was by random chance alone
- Decisions should not be based on whether p-value passes a scientific threshold
- Don’t p-hack: be transparent about everything
- Don’t confuse stat sign with practical importance (p-value doesn’t measure size
of the effect)
- Alone p-value doesnt provide a good measure of evidence regarding model or
hypothesis
Preregister
- Pre-registration: practice of making all aspects of your research process publicly
available before data collection
- Open science: movement to make the process, data and outcomes of research freely
available to everyone
Effect sizes:
- Problem with NHST is doesn’t tell us the importance of an effect
- Effect size: objective and standardized measure of the magnitude of observed effect
- Not affected by sample size (unlike p-values) , which makes it less misleading
than relying on p-values
- Common measures of effect size: cohen’s d, pearson’s correlation coefficient r, and
odds ratio
- When group sizes vary better to use cohen’s d because r can be biased


- Cohen’s d:
- Large effect: .8, medium .5 and small .2

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper oliviaward. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75759 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49
  • (0)
  Kopen