Chemistry → thermodynamics: reactions at equilibrium ∆G=0 (Gabbs free energy) (chemical speciation).
a. at equilibrium: rateforward = ratereverse → NaCl (s) ↔ Na+ + Cl-
𝑐 𝑑
[𝐶] [𝐷]
b. mass law equation: Kw = [OH-][H+] = 10-14 → aA + bB ↔ cC + dD → K = 𝑎 𝑏
[𝐴] [𝐵]
2 ways of calculating free concentration:
1. Solubility of a miner: Al(OH)3 (s) ↔ Al3+ (aq) + 3OH- (aq) → for a given pH and solubility product (Ksp) the free
concentration is calculated from the mass law equation → the concentration of other chemical species (FEX.
Al(OH)2+ (aq)) can be calculated by using a mass law equation again → Al3+ (aq) + OH- (aq) ↔ Al(OH)2+ (aq).
2. Total amount of the element distributed over a number of species: mass balance equation is used → [Me]T = [Men+(aq)]
+ (MeDOM (aq)] + [MeCln+1 (aq)] + [MeOHn-1 (aq)] → the concentrations of all free concentrations are expressed in
terms of the free concentration by using mass law equations, such as [MeOHn-1 (aq)] = K · [Men+(aq)] · [OH- (aq)].
Sorption isotherms = equilibrium between adsorbed C (Q in mol/kg) & solution C (C in mol/L):
- Linear adsorption isotherms: Q = KdCL
𝐾𝐶𝐿
- Langmuir adsorption isotherms: Q = Qmax 1+𝐾𝐶𝐿
→ sorption can have a max (limited number of available sorption sites).
→ sorption depends on: (a) K = affinity constant of a solute for the solid phase (partition coefficient for linear sorption (C and Q are
constant)). (b) amount of solid phase per amount of solution (suspension density/solid-to-solid ratio
(SSR) in kg/L).
→ mass balance equation (per volume): CT = CL + CS (T = total, L = liquid, S = solid) → CS = Q · SSR.
→ linear sorption; CS = K · CL · SSR → so, CT = CL · (1 + K · SSR).
Retardation = velocity of how much a solute is moving slower than water, factor > 1) → for a porous
medium: SSR = ρ𝑏/θ → ρ𝑏 = bulk density of sediment (kg/L), θ = pore volume (L/L) → CT = CL (1 + K ·
ρ𝑏/θ) → (1 + K · ρ𝑏/θ) = retardation factor (R).
Sorption of organic contaminants in soils and sediment: distribution coefficient Kd (L/kg) between solid phase and water (Kd = Q / CL) →
predict fate of organic carbons with organic carbon/water partition coefficient KOC (L/kg) for linear adsorption
→ Kd = fOC · KOC → fOC = organic matter fraction → Q = fOC · KOC · CL.
Composition leachate: dissolved organic matter, inorganic ions, heavy metals, xenobiotic compounds.
Combustion products: CO2, H2O plus SO2, NOx, PAHs and chlorinated organic substances.
Extractive metallurgical processing = (a) leaching (removing ash and soil), (b) smelting and roasting (reducing ores,
transforming into oxides), (c) electrolysis (decomposing compounds into single substances or other compounds).
Chemical reaction AMD: picture right → when catalyzed by bacteria: (very slow when pH<3) →
→ neutralisation of AMD: carbonate mineral
dissolution = increase in pH and cations by generating aqueous carbonate species →
.
Inorganic salt: ammonium sulfate ((NH4)2SO4) → organic fertiliser: urea (CO(NH2)2) → favourable way to
use nitrate: turn NO3- into N2 → dissolved P as orthophosphate = H3PO4, H2PO4- , HPO42-, PO43- → low
P solubility (<0.01 mg L-1).
equation for algal growth: .
Octanol-water partition coefficient (KOW) = KOW = COP / CW → COP and CW are concentrations (g/L) of
species in octanol-rich and water-rich phase → log10 because KOW values between 10-3 and 107.
→ ↑ bioaccumulation for a ↑ KOW → ↑ hydrophobicity (tendency to move from aqueous phase into lipids)
for ↑ log KOW → ↑ bioaccumulation for ↑ log KOW → ↑ volatilisation for ↑ vapour pressure → ↑ leaching for
↑ solubility and ↓ sorption affinity.
→ glyphosate: prevents synthesis of aromatic amino acids needed for plant growth → effects might last for decades.
Toxicology → dose-response relationship: potency = higher equals less of a compound needed for an
adverse effect → efficacy = at the same dosage you get a higher adverse effect.
→ benefits toxican: therapeutic index = LD50/ED50 (the farther the median lethal dose is away from the median
effective dose, the higher the safety margin from an accidental overdose) → .
Similarities tox and ecotox: (a) fate of chemicals in organisms (toxicokinetics and
-dynamics), (b) multiple stressors (cause an increase in sensitivity), (c) toxicity testing,
(d) risk assessment (individuals vs. ecosystem).
Cations = electrophiles (molecules that easily
accept electrons) that interact with nucleophiles
(molecules that easily donate electrons = anions)
→ FEX. sulfur, nitrogen and phosphor →
nucleophilic elements are abundantly present in
biomolecules, so metals easily interact with these
molecules, thereby disturbing their function.
Metals interact with a target (picture right) →
FEX. cadmium → major adverse effect; nephrotoxicity = cadmium binds to low molecular weight
proteins and gets freed in kidney cells, where it damages the cells → causes; (a) tubular damage, (b)
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper yaralangeveld. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.