100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Normalverteilte Zufallsgrößen)

Beoordeling
-
Verkocht
-
Pagina's
2
Geüpload op
30-06-2022
Geschreven in
2021/2022

Normalverteilte Zufallsgrößen)

Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
30 juni 2022
Aantal pagina's
2
Geschreven in
2021/2022
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

TU Dresden · Fakultät Mathematik · Institut für Numerische Mathematik 1


Prof. Dr. A. Schwartz Institut für Numerische Mathematik
Dr. M. Herrich SS 2022



Übungen zur Vorlesung Spezielle Kapitel der Mathematik
11. Übung, 20.06.–24.06.2022

Aufgabe 1 (Normalverteilte Zufallsgrößen)
Der Benzinverbrauch X (in Liter pro 100 km) von Fahrzeugen eines gewissen Typs sei normalverteilt
2
mit dem Erwartungswert µ = 7 100ℓkm und der Varianz σ 2 = 0,04 (100ℓkm)2 .

(a) Ermitteln Sie die Wahrscheinlichkeit dafür, dass der Benzinverbrauch eines zufällig ausgewähl-
ten Fahrzeugs des betrachteten Typs

(a1) höchstens 7,1 100ℓkm beträgt,
(a2) weniger als 6,7 100ℓkm beträgt,
(a3) mehr als 7,5 100ℓkm beträgt,
(a4) mindestens 6,8 100ℓkm , aber höchstens 7,3 100ℓkm beträgt,
(a5) um mehr als 0,3 100ℓkm vom erwarteten Benzinverbrauch abweicht.

(b) Bestimmen Sie eine möglichst kleine Zahl c ∈ R derart, dass der Benzinverbrauch eines zufällig
ausgewählten Fahrzeugs des betrachteten Typs

(b1) mit einer Wahrscheinlichkeit von mindestens 97,5% kleiner als c Liter pro 100 km ist,
(b2) mit einer Wahrscheinlichkeit von mindestens 99% um weniger als c Liter pro 100 km vom
erwarteten Benzinverbrauch abweicht.

Hinweis: Nutzen Sie zur Lösung der Teilaufgaben die in Ihrer Formelsammlung tabellierten Werte
der Verteilungsfunktion der Standardnormalverteilung.
Lösung: Wir beginnen mit ein paar Vorüberlegungen.

• Soll für eine normalverteilte Zufallsgröße X mit Erwartungswert µ und Standardabweichung
σ eine Wahrscheinlichkeit der Form P (X < b) oder P (X ≤ b) (für vorgegebenes b) bestimmt
werden, so geht das mit der folgenden Formel:
 
b−µ
P (X < b) = P (X ≤ b) = Φ .
σ

(Da es sich bei X als normalverteilter Zufallsgröße insbesondere um eine stetige Zufallsgröße
handelt, stimmen die Wahrscheinlichkeiten P (X < b) und P (X ≤ b) überein.) Mit Φ ist dabei
die Verteilungsfunktion der Standardnormalverteilung gemeint. Für z ≥ 0 sind die zugehö-
rigen Funktionswerte Φ(z) tabelliert (zumindest für ausgewählte Werte z und zumindest auf
einige Nachkommastellen genau gerundet). Für z < 0 sind die Werte Φ(z) üblicherweise nicht
tabelliert. Stattdessen ist dann die Formel Φ(z) = 1 − Φ(−z) zu verwenden; Φ(−z) kann dann
wieder abgelesen werden.

• Sind Wahrscheinlichkeiten anderer Gestalten, zum Beispiel P (X > b) oder P (a ≤ X ≤ b),
gesucht, sollten diese zunächst in Ausdrücke überführt werden, die nur noch Wahrscheinlich-
keiten der Form P (X < b) bzw. P (X ≤ b) enthalten. Wie dann letztere berechnet werden
können, wissen wir bereits. Zum Beispiel können die folgenden Umformungen hilfreich sein:

P (X > b) = 1 − P (X ≤ b), P (a ≤ X ≤ b) = P (X ≤ b) − P (X < a).
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
sabahekmat

Maak kennis met de verkoper

Seller avatar
sabahekmat
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
6
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen