100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

cours de thermodynamique

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
24-12-2022
Geschreven in
2021/2022

cours de thermodynamique chapitre 2: Echanges d’énergie : travail, chaleur, énergie interne

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
24 december 2022
Aantal pagina's
24
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Mohcen
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

CHAPITRE II : Echanges d’énergie : travail, chaleur, énergie interne


II. 1. Introduction

Le but de la thermodynamique est l’étude des propriétés des systèmes et leurs évolutions en
fonction des échanges d’énergie avec le milieu extérieur.
Un système peut échanger de la masse et de l’énergie avec le milieu extérieur, alors son état
thermodynamique change par gain ou par perte de masse ou d’énergie. On dit que le système
subit une transformation qui entraine une variation des variables d’état.
Chaque système a un certain contenu en énergie sous forme d’énergie mécanique (cinétique
ou potentielle) à l’échelle microscopique.


II. 2. Energie interne (U)

L’énergie interne d’un système est son contenu en énergie pour ce système. Chaque système
(solide, liquide ou gazeux) est une collection d’objets tels des atomes, des molécules,…etc.
Ces particules à l’échelle microscopique sont toujours animées de mouvements incessants et
aléatoires (agitation moléculaire); dite vibration pour les solides et agitation thermique pour
les liquides et les gaz.
A ces mouvements microscopiques est associé de l’énergie cinétique Eci pour chaque
particule. De plus, entre ces atomes peuvent exister des forces d’interaction (attraction et
répulsion) aux quelles on associe une énergie potentielles Epi pour chaque particule.
A l’échelle microscopique, l’énergie interne (U) du système est définie comme la somme
algébriques des énergies cinétiques Eci et potentielles Epi, de toutes les particules formant le
système.


𝐔= ∑ 𝑬𝒄𝒊 + ∑ 𝑬𝒑𝒊




II. 2. 1. Propriétés de l’énergie interne

A l’équilibre thermique, l’énergie interne (U) :
 C’est une énergie exprimée en Joule [J] ou en [cal].
 Elle a une valeur bien définie.
 C’est une fonction d’état (qui ne dépend que l’état thermodynamique initial et final).

13

,L’énergie interne caractérise le niveau énergétique du système thermodynamique. L’énergie
interne d’un système peut varier suite à des échanges d’énergie avec le milieu extérieur. Les
énergies sont principalement échangées sous forme de chaleur (Q) et de travail (W).


II. 3. La Chaleur (Q)

La chaleur est une forme spéciale de l’énergie :
 C’est une énergie exprimée en [J] ou en [kcal].
 Elle est échangée à l’échelle microscopique sous forme désordonnée par agitation
moléculaire (c’est-à-dire par choc entre les molécules en mouvement.
 Elle s’écoule toujours d’une source chaude vers une source froide.
 La chaleur n’est pas une fonction d’état, c'est-à-dire dépend du chemin suivi.


On peut définir deux types de chaleurs distinctes:



II. 3. 1. Chaleur sensible

Elle est liée à une variation de température (∆T) du système à la suite d’un réchauffement ou
d’un refroidissement de ce dernier. Elle est proportionnelle à la quantité de la matière (masse
ou nombre de moles) et à la différence de température (∆T).


 Pour une transformation infinitésimale:

𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 ou 𝑑𝑄 = 𝑛 𝐶 𝑑𝑇


Où :

m : La masse de la matière du système.
n : Le nombre de moles du système.
C : La capacité calorifique massique ou molaire de la matière exprimée
respectivement en [J. Kg -1. K-1] ou [J. mol -1. K-1]. Elle peut être à pression constante
(Cp) ou à volume constant (Cv)




14

,  Pour une transformation finie :

La chaleur Q échangée lors d’une transformation finie entre l’état (1) et l’état (2) est :



𝑄= 𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 (𝑇 − 𝑇 ) = 𝑚 𝐶∆𝑇


Si on considère que la capacité calorifique du système est indépendante de la
température. Dans le cas contraire, C = f (T) on aura :



𝑄= 𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 𝑑𝑇



On remplace la formule de la capacité puis on fait l’intégrale complète.


II. 3. 2. Chaleur latente

La quantité de chaleur latente est la chaleur nécessaire pour qu’une quantité de matière puisse
changer son état physique à une température constante. Elle est proportionnelle à la quantité
de matière (masse ou nombre de moles) et la valeur de la chaleur latente liée à ce changement
d’état physique.


𝑄 = 𝑚. 𝐿 ou 𝑄 = 𝑛. 𝐿


Pour chaque type de matière, il existe trois types de chaleurs latentes liées aux six
changements d’état physiques ( Ls, Lv et Lf).

Où Ls, Lv ou Lf : est la chaleur massique ou molaire associée respectivement à une
sublimation, vaporisation ou fusion.




15
€5,27
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Mohcen

Maak kennis met de verkoper

Seller avatar
Mohcen École Polytechnique
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
5
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen