100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Arguinis et al. – Best-Practice Recommendations for Defining, Identifying, and Handling Outliers

Beoordeling
-
Verkocht
-
Pagina's
2
Geüpload op
05-04-2019
Geschreven in
2018/2019

Summary of artical by Arguinis et al. on defining, identifying and handling outliers.









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
5 april 2019
Aantal pagina's
2
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Arguinis et al. – Best-Practice Recommendations for Defining, Identifying, and
Handling Outliers

Outliers are data points that deviate markedly from others. They usually exert
disproportionate influence on substantive conclusions regarding relationships among
variables.
Researchers are faced with multiple (and often conflicting) definitions of outliers, techniques
to identify outliers, and suggestions on what to do with outliers once they are found.

Choices about outliers change substantive conclusions
Decisions on how to define, identify and handle outliers influence conclusions, including the
presence or absence, direction, and size of an effect or relationship.

First of all, the way in which outliers are identified is often inconsistent with how outliers are
defined.
The writers note that lack of transparency and incongruence in how outliers are defined,
identified, and handled are quite pervasive in articles published in some of the most
prestigious and influential journals.
Third, there is little discussion on the subject of studying outliers that are found to be
interesting and worthy of further examination. A pervasive view is that outliers among
substantive researchers is that outliers are problems that must be fixed, usually by
removing particular cases from the analyses.

Making decisions on how to define, identify, and handle outliers
The first principle is that choices and procedures regarding the treatment of outliers should
be described in detail to ensure transparency including a rationale for the particular
procedures that have been implemented. Second, researchers should clearly and explicitly
acknowledge the type of outlier in which they are interested, and then use an identification
technique that is congruent with the outlier definition.

The best practice recommendation is built around a sequence of steps:
1. Error outliers: the data point that lie at a distance from other data points because
they are the result of inaccuracies, they are nonlegitimate observations.
Using more than one technique is necessary to identify as many potential error
outliers as possible. It is then necessary to determine the cause of the identified
outlying observations. If caused by an error in recording, coding or data collection,
then an outlying observation is an error outlier. All remaining outlying data points
whose cause is unclear are treated as interesting outliers.
Once identified, the correct procedure is to either adjust the data points to their
correct values or remove such observations.
2. Interesting outliers: accurate data points that lie at a distance from other data points
and may contain valuable or unexpected knowledge.
The first step is to identify potential interesting outliers by using the same techniques
as identifying error outliers, and second to identify which are actually interesting.
Handling those outliers could be done by a quantitative approach, such as empirically
analyzing differences between the manufacturing synergies of high and low outlier
performers. Also qualitative approaches can be used.
3. Influential outliers: accurate data points that lie at a distance from other data points,
are not error or interesting, and also affect substantive conclusions. There are two
types of influential outliers, namely model fit outliers (data points whose presence
alters the fit of a model) and prediction outliers (data points whose presence alters
parameter estimates.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lindawijnhoven Radboud Universiteit Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
60
Lid sinds
8 jaar
Aantal volgers
54
Documenten
24
Laatst verkocht
1 jaar geleden

4,3

13 beoordelingen

5
9
4
1
3
2
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen