100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Arguinis et al. – Best-Practice Recommendations for Defining, Identifying, and Handling Outliers €3,48
In winkelwagen

Samenvatting

Summary Arguinis et al. – Best-Practice Recommendations for Defining, Identifying, and Handling Outliers

 112 keer bekeken  0 keer verkocht

Summary of artical by Arguinis et al. on defining, identifying and handling outliers.

Voorbeeld 1 van de 2  pagina's

  • 5 april 2019
  • 2
  • 2018/2019
  • Samenvatting
Alle documenten voor dit vak (7)
avatar-seller
lindawijnhoven
Arguinis et al. – Best-Practice Recommendations for Defining, Identifying, and
Handling Outliers

Outliers are data points that deviate markedly from others. They usually exert
disproportionate influence on substantive conclusions regarding relationships among
variables.
Researchers are faced with multiple (and often conflicting) definitions of outliers, techniques
to identify outliers, and suggestions on what to do with outliers once they are found.

Choices about outliers change substantive conclusions
Decisions on how to define, identify and handle outliers influence conclusions, including the
presence or absence, direction, and size of an effect or relationship.

First of all, the way in which outliers are identified is often inconsistent with how outliers are
defined.
The writers note that lack of transparency and incongruence in how outliers are defined,
identified, and handled are quite pervasive in articles published in some of the most
prestigious and influential journals.
Third, there is little discussion on the subject of studying outliers that are found to be
interesting and worthy of further examination. A pervasive view is that outliers among
substantive researchers is that outliers are problems that must be fixed, usually by
removing particular cases from the analyses.

Making decisions on how to define, identify, and handle outliers
The first principle is that choices and procedures regarding the treatment of outliers should
be described in detail to ensure transparency including a rationale for the particular
procedures that have been implemented. Second, researchers should clearly and explicitly
acknowledge the type of outlier in which they are interested, and then use an identification
technique that is congruent with the outlier definition.

The best practice recommendation is built around a sequence of steps:
1. Error outliers: the data point that lie at a distance from other data points because
they are the result of inaccuracies, they are nonlegitimate observations.
Using more than one technique is necessary to identify as many potential error
outliers as possible. It is then necessary to determine the cause of the identified
outlying observations. If caused by an error in recording, coding or data collection,
then an outlying observation is an error outlier. All remaining outlying data points
whose cause is unclear are treated as interesting outliers.
Once identified, the correct procedure is to either adjust the data points to their
correct values or remove such observations.
2. Interesting outliers: accurate data points that lie at a distance from other data points
and may contain valuable or unexpected knowledge.
The first step is to identify potential interesting outliers by using the same techniques
as identifying error outliers, and second to identify which are actually interesting.
Handling those outliers could be done by a quantitative approach, such as empirically
analyzing differences between the manufacturing synergies of high and low outlier
performers. Also qualitative approaches can be used.
3. Influential outliers: accurate data points that lie at a distance from other data points,
are not error or interesting, and also affect substantive conclusions. There are two
types of influential outliers, namely model fit outliers (data points whose presence
alters the fit of a model) and prediction outliers (data points whose presence alters
parameter estimates.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lindawijnhoven. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 47561 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,48
  • (0)
In winkelwagen
Toegevoegd