100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

MAT1510 Assignment 2 (COMPLETE ANSWERS) 2024 (186115) - DUE 31 May 2024

Beoordeling
2,5
(2)
Verkocht
7
Pagina's
24
Cijfer
A+
Geüpload op
16-05-2024
Geschreven in
2023/2024

MAT1510 Assignment 2 (COMPLETE ANSWERS) 2024 (186115) - DUE 31 May 2024 ;100 % TRUSTED workings, explanations and solutions. For assistance call or W.h.a.t.s.a.p.p us on ...(.+.2.5.4.7.7.9.5.4.0.1.3.2)........... ASSIGNMENT 02 Due date: Friday, 31 May 2024 Total Marks: 100 UNIQUE ASSIGNMENT NUMBER: 186115 ONLY FOR YEAR MODULE This assignment covers chapter 2 of the prescribed book as well as the study guide DO NOT USE A CALCULATOR. Question 1: 13 Marks Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement. (1.1) If f is a function, then f(s + t) = f(s) + f(t). (3) (1.2) If f(s) = f(t), then s = t. (2) (1.3) If f is a function, then f(3x) = 3f(x). (3) (1.4) A vertical line intersects the graph of a function at most once. (2) (1.5) If f is one-to-one, then f (3) − 1 (x) = 1 f(x) . Question 2: 9 Marks The perimeter of a rectangle is 16 meters. (2.1) If the length of one of the sides of the rectangle is (1 + x) meters, express the area A of the (4) rectangle in terms of x. (2.2) Calculate the maximum area of the rectangle. (3) (2.3) What are the dimensions of the rectangle when its area is a maximum? (2) Question 3: 6 Marks Suppose a stone is thrown vertically upwards with a velocity ofu meters per second. Then its height is h (in meters) after t seconds is given by the formula h = ut − 4.8t 2 . (3.1) Suppose the stone is thrown upwards with a velocity of 24 meters per second. Sketch the (5) graph of the function defined by h = ut − 4.8t 2 . Label the axes properly, and show the coordinates of the critical points on the graph clearly. 16 MAT1510/101/0/2023 (3.2) What is the maximum height that the stone reaches? (1) Question 4: 6 Marks Sketch the graph of the function g(x) which is piecewise-defined by (4.1) (4) g(x) =    − x 2 + 2x + 3 if x < 1 4 if x = 1 x 2 − 2x + 5 if x > 1 (4.2) Explain why g is called a function. (1) (4.3) Is g a one-to-one function? Give a reason for your answer. (1) Question 5: 20 Marks The sketch shows the graph of the functions f and g. Function f is defined by y = f(x) = m|x − p| + q 17 and g is defined by y = g(x) = ax2 + bx + c S is the salient point of the graph of f , and T is the turning point of the graph of g. The two graphs intersect each other at T and R. (5.1) Determine the value of m, p and q and then write down the equation of f. (4) (5.2) Describe the steps of the transformation process that you would apply to the graph of f to (3) obtain the graph of y = 5|x|. (5.3) Find the values of a, b and c and then write down the equation of g. (4) (5.4) Determine the coordinates of T. (2) (5.5) Use the graph of f and g to solve the inequality (3) f(x) g(x) < 1 for x ∈ (−2,4). (Do not solve the inequality algebraically.) (5.6) Suppose the function d describes the vertical distance between the graph of f and g on the interval [− 2, xT ] ( where xT is the x-coordinate of T). (a) Complete and simplify the equation (2) d(x) = ................ for x ∈ [−2, xT ]. (b) What is the maximum vertical distance between the graphs of f and g on the interval (2) [− 2, xT ]. Question 6: 11 Marks Suppose a function g is defined by y = g(x) = 7+ 6x − x 2 (6.1) Restrict the domain of g such that the function gr defined by (2) gr (x) = g (x) for all x ∈ Dgr , is one-to-one function, and such that the domain Dgr contains only positive numbers. (6.2) Determine the equation of the inverse function g (3) − 1 r and the set Dg − 1 r . (6.3) Show that (6) gr ◦ g − 1 r (x) = x for x ∈ Dg − 1 r and g − 1 r ◦ gr (x) = x for x ∈ Dgr . 18 MAT1510/101/0/2023 Question 7: 15 Marks The function h(x) and l(x) are defined by h(x) = 3− √ x + 4 and l(x) = 3+ √ x + 4. Suppose the symbols Dh and Dl denote the domains of h and l respectively. Determine and simplify the equation that defines (7.1) the domain of h and l respectively, Dh and D (2) l (7.2) h + l and give the set Dh+ (3) l (7.3) h − l and give the set Dh− (3) l (7.4) h ·l and give the set Dh· (3) l (7.5) (4) h l and give the set Dh l . Question 8: 16 Marks The functions f and g are defined by f(x) = x x + 1 and g(x) = x + 1 x respectively. Suppose the symbols Df and Dg denote the domains of f and g respectively. Determine and simplify the equation that defines (8.1) f ◦ g and give the set D (3) f◦g (8.2) g ◦ f and give the set Dg◦ (3) f (8.3) f ◦ f and give the set D (3) f◦f (8.4) g ◦ g and give the set Dg◦ g (3) (8.5) Find any two possible functions h and l such that (4) (h ◦ l) (x) = − √ x + 2 3 . Question 9: 4 Marks (9.1) Stretch the graph of f(x) = | x| horizontally by a factor 2, then shift the resulting graph hori- (2) zontally 6 units to the left, and then shift this transformed graph vertically to 4 units downward. What is the equation for the final transformed graphs? (9.2) Shrink the graph of g(x) = x (2) 2 vertically by a factor of 1 6 , then reflect the resulting graph about the x-axis, and then shift this transformed graph vertically 5 6 units upwards. What is the equation for the final transformed graph?

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
16 mei 2024
Aantal pagina's
24
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

MAT1510
ASSIGNMENT 2 2024
UNIQUE NO. 186115
DUE DATE: 31 MAY 2024

, ASSIGNMENT 02
Due date: Friday, 31 May 2024
Total Marks: 100
UNIQUE ASSIGNMENT NUMBER: 186115

ONLY FOR YEAR MODULE

This assignment covers chapter 2 of the prescribed book as well as the study guide

DO NOT USE A CALCULATOR.

Question 1: 13 Marks

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give
an example that disproves the statement.

(1.1) If f is a function, then f (s + t) = f (s) + f (t). (3)

(1.2) If f (s) = f (t), then s = t. (2)

(1.3) If f is a function, then f (3x) = 3f (x). (3)

(1.4) A vertical line intersects the graph of a function at most once. (2)
1
(1.5) If f is one-to-one, then f − 1 (x) = . (3)
f (x)

Question 2: 9 Marks

The perimeter of a rectangle is 16 meters.

(2.1) If the length of one of the sides of the rectangle is (1 + x) meters, express the area A of the (4)
rectangle in terms of x.

(2.2) Calculate the maximum area of the rectangle. (3)

(2.3) What are the dimensions of the rectangle when its area is a maximum? (2)

Question 3: 6 Marks

Suppose a stone is thrown vertically upwards with a velocity ofu meters per second. Then its height is h (in
meters) after t seconds is given by the formula
h = ut − 4.8t 2 .


(3.1) Suppose the stone is thrown upwards with a velocity of 24 meters per second. Sketch the (5)
graph of the function defined by
h = ut − 4.8t 2 .
Label the axes properly, and show the coordinates of the critical points on the graph clearly.


16

, MAT1510/101/0/2023


(3.2) What is the maximum height that the stone reaches? (1)


Question 4: 6 Marks

Sketch the graph of the function g(x) which is piecewise-defined by

(4.1) (4)

 − x 2 + 2x + 3 if x < 1
g(x) = 4 if x = 1
 2
x − 2x + 5 if x > 1


(4.2) Explain why g is called a function. (1)

(4.3) Is g a one-to-one function? Give a reason for your answer. (1)


Question 5: 20 Marks




The sketch shows the graph of the functions f and g. Function f is defined by

y = f (x) = m|x − p| + q


17

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
1 jaar geleden

1 jaar geleden

2,5

2 beoordelingen

5
0
4
1
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LIBRARYpro University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10539
Lid sinds
2 jaar
Aantal volgers
4904
Documenten
4831
Laatst verkocht
1 dag geleden
LIBRARY

On this page, you find all documents, Package Deals, and Flashcards offered by seller LIBRARYpro (LIBRARY). Knowledge is Power. #You already got my attention!

3,7

1460 beoordelingen

5
684
4
236
3
243
2
79
1
218

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen