100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Lecture notes XAI course €10,46   In winkelwagen

College aantekeningen

Lecture notes XAI course

 9 keer bekeken  0 keer verkocht

This covers all the material discussed during the lectures.

Voorbeeld 4 van de 46  pagina's

  • 24 mei 2024
  • 46
  • 2023/2024
  • College aantekeningen
  • Martijn willemsen
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
juultjevandervelden
XAI

,Lecture 1
User Centered Design cycle




Discussion point
argument/statement that is well explained and grounded in the paper and potentially other
sources


Can include:
• criticisms and ideas on theoretical points and relation to other theories
• criticisms and ideas on methods used to test the theories
• criticisms on the conclusions drawn by the authors
• discussions of boundary conditions
• criticisms and ideas on new or different applications

,Important components
Argument: The argument is explicit, clearly explained, persuasive and well connected to the
literature
Structure: The structure of the DP is clear: it has a clear intro, argument and conclusion
Style, tone, grammar: The style and tone are appropriate to formal scientific writing and fit the
domain. Active rather than passive style of writing. Proper grammar usage.


Argument
Point made: Often writers forget to make the argument explicit
Argument strength: The argument is clearly explained, persuasive and well connected to the
literature
• you need to explain what you argue based on the paper
• go beyond the obvious, find one that is really persuasive
• good arguments also take the opposite perspective: “one might think that .. but ..”
• don’t try to argue more than one thing


Structure
It has a clear intro, position, argument and conclusion
Intro: it has a clear intro, position, argument and conclusion
• help the reader to put your argument into context
• for long papers: which part are you really arguing about
Claim/argumentation
Conclusion: Don’t forget to end with a clear conclusion that finished the argument


Style
Style, tone and grammar:
• Scientific does not mean complex writing ..
• “Prevent long sentences, that because of all sorts of qualifications, or additional thoughts,
given a specific topic that might be too vaguely defined, or have too many clauses”
• English language uses active voice
• Use word or other tools for spell / grammar checking

, Explainable AI
Means-end analysis compare current state with goal state, choose action that brings you
closer to the goal


Why need explainability
• model validation: avoid biases unfairness or overfitting, detect issues in the training data,
adhere to ethical/legal requirements
• Model debugging and improvement: improving the model fit, adverbial learning (fooling a
model with ‘hacked’ inputs), reliability & robustness (sensitivity to small input changes)
• Knowledge discovery: explanations provide feedback to the data scientist or user that can
result in new insights by revealing hidden underlying correlations/patterns
• Trust and technology acceptance: explanations might convince users to adopt the
technology more and have more control


Important properties for ML
• Accuracy: does the explanation predict unseen data? Is it as accurate as the model itself.
• Fidelity: does the explanation approximate the prediction of the model? Especially
important for black-box models (local fidelity)
• Consistency: same explanations for different models?
• Stability: similar explanations for similar instances?
• Comprehensibility: do humans get it?


What is good explanation (for humans)?
Confalonieri et al. (2020) & Molnar (2020) based on Miller:
• Contrastive: why was this prediction made instead of another? (counterfactual) What
should I change to get my loan approved rather than rejected? Only interested in those
factors that matter/change the situation: no complete explanation
• Selective: focus on a few important causes (not all features that contributed to the model)
• Social: Should fit the mental model of the explained / target audience, consider the social
context, and fit their prior belief (confirmation bias)
• Abnormalness: humans like rare causes (related to counterfactuals)
• Truthfulness: less important for humans then selectiveness

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper juultjevandervelden. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,46. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60434 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,46
  • (0)
  Kopen