100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary and Flashcards - Data Structures and Algorithm

Beoordeling
-
Verkocht
-
Pagina's
124
Geüpload op
25-06-2024
Geschreven in
2023/2024

In depth coverage of algorithms and data structures. Covers algorithmic efficency, time and space complexity for all O notation (big 0, little 0, omega). Linear, quadratic to exponential algorithms. Kadane's algorithm, brute force algorithm. Summary of all sorting algorithms, trees (AVL, B-trees), arrays, loops, heaps (fibonnaci, binomial etc), stacks, queues, all types of lists. Details recursion and iteration, tower of hanoi, types of searches, divide and conquer and greedy algorithms, traversals and their calculations. Covers graphs in detail and their types, kuratowski’s and wagners theorem, MSTs, shortest path finding algorithms (Prim's, Dijkstra's),

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
25 juni 2024
Aantal pagina's
124
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Data Structures and Algorithms (COM1029)


https://www.inf.ed.ac.uk/teaching/courses/inf2b/algnotes/note02.pdf
(Data Structures and Algorithms Notes | University of Edinburgh)
https://sd.blackball.lv/library/Introduction_to_Algorithms_Third_Edition_(2009
).pdf
(Introduction to Algorithms Book)
https://www.vlebooks.com/Product/Index/2025761?page=0
(Algorithmics Book)
https://www.cs.bham.ac.uk/~jxb/DSA/dsa.pdf
(Data Structures and Algorithms Notes | University of Birmingham)
https://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
(Algorithms Notes)
https://www.geeksforgeeks.org/data-structures/?ref=shm
(Data Structure Notes)
https://www.geeksforgeeks.org/fundamentals-of-algorithms/?ref=shm
(Algorithm Notes)




1) What is an Algorithm? An algorithm is a finite sequence of rigorous
instructions, typically used to solve a class of
specific problems or to perform a computation.

2) What is a Program? A program is a sequence or set of instructions in a
programming language for a computer to
execute.

,3) Why do we analyse algorithms? ● To predict the behaviour of an algorithm
without implementing it on a specific
computer.
● It is much more convenient to have
simple measures for the efficiency of an
algorithm than to implement the
algorithm and test the efficiency every
time a certain parameter in the
underlying computer system changes.
● It is impossible to predict the exact
behaviour of an algorithm. There are too
many influencing factors.
● The analysis is thus only an
approximation; it is not perfect.
● More importantly, by analysing different
algorithms, we can compare them to
determine the best one for our purpose.

Types of Algorithm Analysis:

● Best case
● Worst case
● Average case

Best case: Define the input for which algorithm
takes less time or minimum time. In the best case,
calculate the lower bound of an algorithm.
Example: In the linear search when search data is
present at the first location of large data then the
best case occurs.

Worst Case: Define the input for which algorithm
takes a long time or maximum time. In the worst
case, calculate the upper bound of an algorithm.

Average case: In the average case take all random
inputs and calculate the computation time for all
inputs. And then we divide it by the total number
of inputs.
Average case =
all random case time / total no of case.

,4) What is Algorithm Efficiency? Algorithmic efficiency is a property of an
algorithm which relates to the amount of
computational resources used by the algorithm.
An algorithm must be analysed to determine its
resource usage, and the efficiency of an algorithm
can be measured based on the usage of different
resources.

To measure how efficient an algorithm is,
two resources are commonly considered in
algorithm execution:




5) What is Time Complexity? How do we The time complexity is the computational
measure it? complexity that describes the amount of computer
time it takes to run an algorithm.




Time complexity is commonly estimated by
counting the number of elementary operations
performed by the algorithm, supposing that each
elementary operation takes a fixed amount of
time to perform. Thus, the amount of time taken
and the number of elementary operations
performed by the algorithm are related by a
constant factor.

, 6) How do we use Time Complexity to
Compute the Average of an Array of Size
N?




7) What are Linear Time Algorithms? An algorithm is said to take linear time, or
O(n) time, if its time complexity is O(n).
Informally, this means that the running time
increases at most linearly with the size of the
input.

More precisely, this means that there is a constant
c such that the running time is at most cn for
every input of size n. For example, a procedure
that adds up all elements of a list requires time
proportional to the length of the list, if the adding
time is constant, or, at least, bounded by a
constant.
€5,92
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
williamdaniel

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
williamdaniel University of Surrey
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
8
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen