100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Introduction to Real Analysis 4th Edition Bartle Solutions Manual

Beoordeling
-
Verkocht
-
Pagina's
21
Cijfer
A+
Geüpload op
01-07-2024
Geschreven in
2023/2024

CONTENTS Chapter 1 Preliminaries .....................................................1 Chapter 2 The Real Numbers ............................................... 7 Chapter 3 Sequences .......................................................17 Chapter 4 Limits ...........................................................28 Chapter 5 Continuous Functions ........................................... 33 Chapter 6 Differentiation ...................................................43 Chapter 7 The Riemann Integral ...........................................51 Chapter 8 Sequences of Functions ..........................................61 Chapter 9 Infinite Series ................................................... 68 Chapter 10 The Generalized Riemann Integral ............................. 77 Chapter 11 A Glimpse into Topology .......................................88 Selected Graphs .............................................................95 This sample only, Download all chapters at: CHAPTER 1 PRELIMINARIES We suggest that this chapter be treated as review and covered quickly, without detailed classroom discussion. For one reason, many of these ideas will be already familiar to the students — at least informally. Further, we believe that, in practice, those notions of importance are best learned in the arena of real analysis, where their use and significance are more apparent. Dwelling on the formal aspect of sets and functions does not contribute very greatly to the students’ understanding of real analysis. If the students have already studied abstract algebra, number theory or combinatorics, they should be familiar with the use of mathematical induction. If not, then some time should be spent on mathematical induction. The third section deals with finite, infinite and countable sets. These notions are important and should be briefly introduced. However, we believe that it is not necessary to go into the proofs of these results at this time. Section 1.1 Students are usually familiar with the notations and operations of set algebra, so that a brief review is quite adequate. One item that should be mentioned is that two sets A and B are often proved to be equal by showing that: (i) if x∈A, then x∈B, and (ii) if x∈B, then x∈A. This type of element-wise argument is very common in real analysis, since manipulations with set identities is often not suitable when the sets are complicated. Students are often not familiar with the notions of functions that are injective (=one-one) or surjective (=onto). Sample Assignment: Exercises 1, 3, 9, 14, 15, 20. Partial Solutions: 1. (a) B ∩ C ={5,11,17,23,...}={6k −1 : k ∈N},A∩(B ∩C)={5,11,17} (b) (A∩B)C ={2,8,14,20} (c) (A∩C)B ={3,7,9,13,15,19} 2. The sets are equal to (a) A, (b) A∩B, (c) the empty set. 3. If A⊆B, then x∈A implies x∈B, whence x∈A∩B, so that A⊆A∩B ⊆A. Thus, if A⊆B, then A=A ∩ B. Conversely, if A = A ∩ B, then x∈A implies x∈A ∩ B, whence x∈B. Thus if A=A ∩ B, then A ⊆ B. 4. If x is in A(B ∩ C), then x is in A but x /∈ B ∩ C, so that x∈A and x is either not in B or not in C. Therefore either x ∈ AB or x ∈ AC, which implies that x ∈ (AB) ∪ (AC). Thus A(B ∩ C) ⊆ (AB) ∪ (AC). 1 Conversely, if x is in (AB) ∪ (AC), then x ∈ AB or x ∈ AC. Thus x ∈ A and either x /∈ B or x /∈ C, which implies that x ∈ A but x /∈ B ∩ C, so that x ∈ A(B ∩ C). Thus (AB) ∪ (AC) ⊆ A(B ∩ C). Since the sets A(B∩C) and (AB)∪(AC) contain the same elements, they are equal. 5. (a) If x ∈ A∩(B ∪C), then x∈A and x∈B ∪C. Hence we either have (i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so that x ∈ (A ∩ B) ∪ (A ∩ C). This shows that A ∩ (B ∪ C) is a subset of (A∩B)∪(A∩C). Conversely, let y be an element of (A∩B)∪(A∩C). Then either (j) y ∈ A∩B, or (jj) y ∈A∩C. It follows that y ∈A and either y ∈B or y ∈C. Therefore, y ∈A and y ∈B ∪C, so that y ∈A∩(B ∪C). Hence (A∩B)∪ (A∩C) is a subset of A∩(B ∪C). In view of Definition 1.1.1, we conclude that the sets A∩(B ∪C) and (A∩B)∪(A∩C) are equal. (b) Similar to (a). 6. The set D is the union of {x : x∈A and x /∈ B} and {x : x /∈ A and x∈B}. 7. Here An ={n+1,2(n+1),...}. (a) A1 ={2,4,6,8,...},A2 ={3,6,9,12,...},A1 ∩A2 = {6,12,18,24,...} = {6k : k ∈ N}=A5. , because if n>1, then n∈An−1; moreover 1 ∈/ An. Also , because n /∈An for any n∈N. 8. (a) The graph consists of four horizontal line segments. (b) The graph consists of three vertical line segments. 9. No. For example, both (0, 1) and (0,−1) belong to . 1 − − − 12. If 0 is removed from E and F, then their intersection is empty, but the intersection of the images under f is {y : 0<y ≤1}. ) is empty, and f(E F) = 14. If y ∈f(E ∩ F), then there exists x∈E ∩ F such that y =f(x). Since x∈E implies y ∈f(E), and x∈F implies y ∈f(F), we have y ∈f(E)∩f(F). This proves f(E ∩F) ⊆ f(E)∩f(F). 15. If x∈f−1(G) ∩ f−1(H), then x∈f−1(G) and x∈f−1(H), so that f(x)∈G and f(x)∈H. Then f(x)∈G ∩ H, and hence x∈f−1(G ∩ H)

Meer zien Lees minder
Instelling
MAT 3300
Vak
MAT 3300










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
MAT 3300
Vak
MAT 3300

Documentinformatie

Geüpload op
1 juli 2024
Aantal pagina's
21
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
BRAINBOOSTERS Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
666
Lid sinds
2 jaar
Aantal volgers
250
Documenten
23255
Laatst verkocht
1 week geleden

In this page you will find all documents , flashcards and package deals offered by seller BRAINBOOSTERS

4,5

341 beoordelingen

5
265
4
30
3
21
2
5
1
20

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen