100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

AP Calculus AB and AP Calculus BC - Popelka (WI) QUESTIONS 100% SOLVED!!

Beoordeling
-
Verkocht
-
Pagina's
14
Cijfer
A+
Geüpload op
26-01-2025
Geschreven in
2024/2025

Equation of A Line - ANSWERy - y1 = m(x - x1) Average Rate of Change (Slope) - ANSWER(y2 - y1)/(x2 - x1) Vertical Asymptote - ANSWERcondition: lim f(x) as x approaches a = + or - infinity conclusion: VA: x = a Horizontal Asymptote - ANSWERcondition: lim f(x) as x approaches + or - infinity = a conclusion: HA: y = a Derivative of A Power or Exponent (Ex: y = a^u) - ANSWERy' = (ln a ) a^u * u' Arc Length - What is the Formula? - ANSWERThe integral from a to b of (1 + [f'(x)])^2)^(1/2) (x^2)^(1/2) = ? - ANSWER*|x|* NOT x Slope of A Secant - ANSWER(Sometimes these can be derivatives in disguise) Power Rule w/Derivatives of Polynomials - ANSWER1. f(x)= x^n, n != 0 (n can not equal zero) 2. f'(x) = nx^(n-1) 3. See picture Linearization - Justification (Tangent Lines) - ANSWERf(x) = L(x) for x near x = a *Second Derivative* 1. UP - f(x) is concave up, the tangent line is below the graph of f(x) and the approx. will *underestimate* the actual value 2. DOWN - f(x) is concave down, the tangent line is above the graph of f(x) and the approx. will *overestimate* the actual value Average Rate of Change - ANSWERMsec = f(x+h) - f(x)/h ( known as the Difference Quotient) *Definition of A Derivative* - ANSWERf'(x) = the limit of h as h approaches zero of f(x+h)-f(x)/h (this is sometimes written with delta to signify change - see picture) Derivative of A Constant - ANSWER1. f(x) = 1 2. f'(x) = 0 Derivative of A Constant - ANSWER Derivative of A Single Variable - ANSWER(d/dx)(x) = 1 *Derivative of A Square* (Ex: y= (x)^(1/2) ) - ANSWER1. y = (x)^(1/2) 2. y' = (1/2)*x^(-1/2) 3. y' = 1/2(x^1/2) Derivative of A Fraction (Ex: y = 1/x) - ANSWER1. y = 1/x = x^-1 2. y' = (-1)(x^-2) = -1/x^2 3. y' = -c/x^2 (c is a constant) Derivatives Constant Multiple Rule - ANSWER Derivative of A Circle (Ex: x^2 + y^2 = 25) - ANSWER1. (d/dx)(x^2) + (d/dy)(y^2) = (dy/dx) 25 2. 2x + 2y * y' = 0 - *Implicit Differentiation* 3. y' = -2x/2y 4. *y' = -x/y* Rectangular Surface Area - ANSWERS = 2pi * The integral from a to b of (f(x))*(1+[f'(x)]^2)^(1/2) dx *Derivatives: Product Rule (Ex: y = f(x)g(x) )* - ANSWERy' = (f(x))*(g'(x)) + (g(x)) * (f'(x)) *Chant* "The first times the derivative of the second, plus the second times the derivative of the first." *Derivatives: Quotient Rule (Ex: y = f(x)/g(x) )* - ANSWERy' = (g(x) * f'(x)) - (f(x) * g'(x))/ (g(x))^2 *Chant* "Low "d" high minus high "d" low, over low^2" Derivat

Meer zien Lees minder
Instelling
AP Calculus AB And AP Calculus BC - Popelka Q
Vak
AP Calculus AB and AP Calculus BC - Popelka Q









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
AP Calculus AB and AP Calculus BC - Popelka Q
Vak
AP Calculus AB and AP Calculus BC - Popelka Q

Documentinformatie

Geüpload op
26 januari 2025
Aantal pagina's
14
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

AP Calculus AB and AP Calculus BC -
Popelka (WI) QUESTIONS 100%
SOLVED!!
Equation of A Line - ANSWERy - y1 = m(x - x1)

Average Rate of Change (Slope) - ANSWER(y2 - y1)/(x2 - x1)

Vertical Asymptote - ANSWERcondition: lim f(x) as x approaches a = + or - infinity
conclusion: VA: x = a

Horizontal Asymptote - ANSWERcondition: lim f(x) as x approaches + or - infinity = a
conclusion: HA: y = a


Derivative of A Power or Exponent (Ex: y = a^u) - ANSWERy' = (ln a ) a^u * u'

Arc Length - What is the Formula? - ANSWERThe integral from a to b of (1 +
[f'(x)])^2)^(1/2)

(x^2)^(1/2) = ? - ANSWER*|x|* NOT x

Slope of A Secant - ANSWER(Sometimes these can be derivatives in disguise)

Power Rule w/Derivatives of Polynomials - ANSWER1. f(x)= x^n, n != 0 (n can not
equal zero)
2. f'(x) = nx^(n-1)
3. See picture

Linearization - Justification (Tangent Lines) - ANSWERf(x) = L(x) for x near x = a

*Second Derivative*
1. UP - f(x) is concave up, the tangent line is below the graph of f(x) and the approx.
will *underestimate* the actual value

2. DOWN - f(x) is concave down, the tangent line is above the graph of f(x) and the
approx. will *overestimate* the actual value

Average Rate of Change - ANSWERMsec = f(x+h) - f(x)/h ( known as the Difference
Quotient)

*Definition of A Derivative* - ANSWERf'(x) = the limit of h as h approaches zero of
f(x+h)-f(x)/h (this is sometimes written with delta to signify change - see picture)

Derivative of A Constant - ANSWER1. f(x) = 1
2. f'(x) = 0

, Derivative of A Constant - ANSWER

Derivative of A Single Variable - ANSWER(d/dx)(x) = 1

*Derivative of A Square* (Ex: y= (x)^(1/2) ) - ANSWER1. y = (x)^(1/2)
2. y' = (1/2)*x^(-1/2)
3. y' = 1/2(x^1/2)

Derivative of A Fraction (Ex: y = 1/x) - ANSWER1. y = 1/x = x^-1
2. y' = (-1)(x^-2) = -1/x^2
3. y' = -c/x^2 (c is a constant)

Derivatives Constant Multiple Rule - ANSWER

Derivative of A Circle (Ex: x^2 + y^2 = 25) - ANSWER1. (d/dx)(x^2) + (d/dy)(y^2) =
(dy/dx) 25
2. 2x + 2y * y' = 0 - *Implicit Differentiation*
3. y' = -2x/2y
4. *y' = -x/y*

Rectangular Surface Area - ANSWERS = 2pi * The integral from a to b of (f(x))*(1+
[f'(x)]^2)^(1/2) dx

*Derivatives: Product Rule (Ex: y = f(x)g(x) )* - ANSWERy' = (f(x))*(g'(x)) + (g(x)) *
(f'(x))

*Chant*
"The first times the derivative of the second, plus the second times the derivative of
the first."

*Derivatives: Quotient Rule (Ex: y = f(x)/g(x) )* - ANSWERy' = (g(x) * f'(x)) - (f(x) *
g'(x))/ (g(x))^2\
*Chant*
"Low "d" high minus high "d" low, over low^2"

Derivative of Trig Functions
1. y = sinx
2. y = cosx
3. y = tanx - ANSWER1. y' = cosx
2.y'= -sinx
3. y' = sec^2 (x)

*The Circle of Derivatives and Integrals - Sine and Cosine* - ANSWERDerivatives:
rotate clockwise (to the right)
sin
-cos cos
-sin
€12,85
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
papersbyjol West Virginia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
421
Lid sinds
2 jaar
Aantal volgers
253
Documenten
14026
Laatst verkocht
1 maand geleden

3,8

72 beoordelingen

5
27
4
18
3
17
2
2
1
8

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen