All lectures (theory part) in one document. I've added many extra sources & links for better understanding of the topics discussed in the lectures.
Check my other summaries for a full guide through all the practicals!
- Scikit-learn tutorial materials. May be hard to follow for the less advanced students
- The Coursera course on Machine Learning with Andrew Ng Matlab/Octave rather than Python
Part 2, week 1
Can we automate problem solving?
For example: flagging spam in your e-mail
Spam versus non-Spam
Page 3, gives 2 e-mail headers with different examples of titels:
- ‘your 5 million released, lottery winner’, ‘your overdue payment’ etc..
- ‘thesis evaluation’, ‘Link to the available data’ etc..
What makes you notice which ones are likely to be spam?
Machine learning is about learning by experience.
- Finding examples of spam and non-spam
- Come up with a learning algorithm
- A learning algorithm infers rules from examples
- These rules can be applied to new data (emails)
Types of learning problems:
- Regression
o Predict person’s age
- Binary classification: (Trying to predict a yes/no questions)
o Detect spam
- Multiclass classification: (one of finite options)
o Recognize type of birds
o Classify newspaper articles as… (categories)
- Multilabel classification: (a finite set of yes/no answers)
o Assign songs to one or more genres
- Ranking: (order object according to relevance)
o Google ranking search results
- Sequence labelling: (input: sequence of elements, output: corresponding sequence of labels)
o Translate between languages
o Summarize text
, - Autonomous behaviour (input: measurement from sensors, output: instructions for actuators
(steering, accelerate etc)
Part 3, week 1
How well is the algorithm learning?
Evaluation: how well is it thinking in its task
its good to keep in mind that for different classification/learning problems you have different evaluation
methods
Predicting age (binary classification if you assume 2 genders)
For predicting age:
- Mean absolute error – the average (absolute) difference between true value and predicted value
- Mean squared error – the average square of the difference between true value and predicted
value
- The error rate: proportion of mistakes
,Kinds of mistakes:
- False positive
o Flagged as spam, but not
- False negative
o Not flagged, but is spam
False positives are a bigger problem for flagging spam.
Precision and Recall
- Metrics which focus on one kind of mistake
- Precision: what fraction of flagged emails were real spam?
- Recall: what fraction of real spam were flagged?
For spam classification we aim for a high precision, because finding spam in your normal inbox (Recall) is
not as shitty as when a normal email has been marked as spam (Precision)
F = true positives + false positives
S = true positives + false negatives
, Precision:
Recall:
Example 1:
True Predicted
1 Spam Spam True positive
2 Spam Not spam False negative
3 Not spam Not spam True negative
4 Not spam Spam False positive
F-score:
- Harmonic mean between precision and recall, a kind of average
- Aka F-Measure
Fß
- Parameter ß quantifies how much more we care about recall than precision
- For example F0.5 is the metric to use if we care half as much about recall as about precision
If ß == 1 it is F- score
Multiclass classification:
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jeroenverboom. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,99. Je zit daarna nergens aan vast.