100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Resume 3EEX0 Griffiths Introduction to Electrodynamics €9,99
In winkelwagen

Samenvatting

Summary Resume 3EEX0 Griffiths Introduction to Electrodynamics

3 beoordelingen
 16 keer verkocht

This is a resume of the book Griffiths Introduction to Electrodynamics Chapter 1- 9 used in the course 3EEX0

Voorbeeld 6 van de 23  pagina's

  • Nee
  • H1 tm h9
  • 16 augustus 2020
  • 23
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)

3  beoordelingen

review-writer-avatar

Door: real-cr7 • 1 jaar geleden

review-writer-avatar

Door: daanbroers8 • 3 jaar geleden

review-writer-avatar

Door: joeyweijn • 4 jaar geleden

avatar-seller
sdeloijer
Chapter 1 Big recap
Dat product ftp.IAIIB cos0 scalar

Cross product written asdeterminant A xD ftp.t É vector


Length Htt A A thxBl is Area ofparallelogram
Triple product Scalar Ä BIE II B E 1 is Volume parallelepiped
see blz 7
Vector A Ex E BIE E Eta B
nevernecessary morethan 1 crossproduct
positionvector
Unitvector I In
Infinitesimaldisplacementvector d dxt dyy.dz E
Seperation vector E F F Z Ik El
sourcepoint
of
position interest

AT FÉdqi Einstein summation Convention used

dt 7T dè
gradiënt vector
Gradiënt 7T Points in direction of maximalincrease offunction T
Magnitude 17hgives slope rateof
increase alongthismaximaldirection

If 7T 0 dt 0 stationarypoint
Del p IE 1
IE Ez E

Divergence p I 3 13 JE
Curl txt
1 En
Vz
Productrules same as forderir À 15 À 7 5 and Nhg Iig
Get scalar fg or I B
Get vector ff or À xD

Page 21 6product rules probalso onformulasheet

, Second derivatives 7 1717
07
Txt 0

Laplacian IT
Integralcalculus Line t.de g a b t.de
jaa surface I dè closedsurface t.de
volume Tdi
É dt dxdydz.frCartesian
de
dr
draaide
sinaardoodfor
for Cylindrical
Spherical



Some important theorems to know


Gradient theorem Htt T b Tca
path independent
de 0

Divergence theorem 7 Ddr I
faucetsin
dat t
uol.me
flowthroughsurface

Strokes theorem t.de t.de
Is ftp.da dependsonlyon boundaryLine notontheparticularsurface used
II dat 0
foranyclosed surface

Integration by parts f g de fgk f.bg
f dx
Cartesian dt dxxntdyy.dzE dt
dxdydz.us
Cylindrical dt ds 5 soldt dzd de
sdsdddz.us
Spherical dt drr rd00 rsinoddodt tsinodrdo.cl0

,Deltafunction ID SU g and Skelet
fix SH flash
3D 8h SexSly Sk and Mde 1
spa
ffHS't âde p
g 4 8127

Helmholtz theorem É if
unambiguously defined 7 E HE specified
and boundary conditions given no r 0
conventioneel minus



If Ix F Ö F TV Fis F or B
Theoremt Curtlessirrotational field
px F Ö everywhere
F de indep ofpath
6 Fde 0 foranyclosedloop
F is gradient of some scalarfunction F TV


If 7E 0 F Pidsome vectorpotential
Theorem 2 Divergenceless solenoidfields
7 F D everywhere
Strada indep ofsurface
EDE 0 foranyclosedsurface
F is the cutofsomevectorfunction F Txt

Always F TV Txt

, Chapter 2
Coulomb's law F I
Electric field E t.IE z
Q is the testcharge
9 are the source charges
Continuous Charge Distribution E Ii f Etr Idq
Along luie dgn IN
i gg 59 Elites Ide
f 9 ij
the prime denotes the source charges Q
p
Field lines density indicates strength density Énn
i
point charge or as vector



If q has 8 than 2g has16
From to
Don't terminate midair but can ago to a
NO INTERSECTIONS
t to source
Flux of É through surface S Eet f E dè fieldlines passing 5
dat product
Gauss's law E dat Itota enclosed charge
het's turn in different.at iso integral
r Edat E de

Using Que Ddt
ME
v e L
t.E e.IT E strijde
o.tt Sir
Integralformbyfareasiestway to compute È if there's symmet

, Example Gaussian surface sphere cylinderor plane

seks
Ë
te
E dij Oey Qen Pdi fles Sds d 2 Kl Sids
kls
We have
IE HETda LEIIda LEI zal
IE tzsl E.ES kls3
E ts
Look at examples 2.5 and 2.6 in the book
strokestheorem
E de 0 y Ê 0

hold for any stal charge distribution

Potential
Define F È dt electricpotential 0 is referencepoint
potentialdifference Kb à È.at Tv

È i convention V of positivecharge positive
Potential obeys superposition V VrtVrt
v NE Volt
Potential not per se zero if E o at tatplace f



Poisson's equation IV
Laplace's equation TV 0 for 8 0

Remember positivecharge potentialhills
negativecharge potentialvalleys DÈ

, VK ffdag

Uci de

This tells how to compute V from given to or 8
Look at example 2.8
For given 8 and symmetry it'smostconvenient tofirst calculate thepotential

P
Triangle En
V
S
E N Én E
SE
Atboundary the normalcomponent of E is discontinuousby
E
Normal derivative In OV in

Work and Energy
F DE W Fd QIE.at Q VIA Na
Forceinapp dir
Path indep Conservative
Hu example
KB Via t
Work neededtoassemble configuration
I work of pointcharges W t TÉ4VII
yougetbackwhendismantled
t potentialenergystored

L IPVde W Gft Vdl W InGouda

W Effende alt space
doesn't takeintoaccountthework necessary tomadetheporiecharge
k more complete totalenergy stored
Use for point charges only
Where is energy stored 41 In field TE energyperunitvolume
2 In Charge IPV energyperunitvolume

1 a NO Superposition I Crossterms Wij WetW 1 EoSÉ Ècht
e.g Doublecharge quadruple totalenergy

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sdeloijer. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €9,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 66781 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€9,99  16x  verkocht
  • (3)
In winkelwagen
Toegevoegd