Chapter 1 Big recap
Dat product ftp.IAIIB cos0 scalar
Cross product written asdeterminant A xD ftp.t É vector
Length Htt A A thxBl is Area ofparallelogram
Triple product Scalar Ä BIE II B E 1 is Volume parallelepiped
see blz 7
Vector A Ex E BIE E Eta B
nevernecessary morethan 1 crossproduct
positionvector
Unitvector I In
Infinitesimaldisplacementvector d dxt dyy.dz E
Seperation vector E F F Z Ik El
sourcepoint
of
position interest
AT FÉdqi Einstein summation Convention used
dt 7T dè
gradiënt vector
Gradiënt 7T Points in direction of maximalincrease offunction T
Magnitude 17hgives slope rateof
increase alongthismaximaldirection
If 7T 0 dt 0 stationarypoint
Del p IE 1
IE Ez E
Divergence p I 3 13 JE
Curl txt
1 En
Vz
Productrules same as forderir À 15 À 7 5 and Nhg Iig
Get scalar fg or I B
Get vector ff or À xD
Page 21 6product rules probalso onformulasheet
, Second derivatives 7 1717
07
Txt 0
Laplacian IT
Integralcalculus Line t.de g a b t.de
jaa surface I dè closedsurface t.de
volume Tdi
É dt dxdydz.frCartesian
de
dr
draaide
sinaardoodfor
for Cylindrical
Spherical
Some important theorems to know
Gradient theorem Htt T b Tca
path independent
de 0
Divergence theorem 7 Ddr I
faucetsin
dat t
uol.me
flowthroughsurface
Strokes theorem t.de t.de
Is ftp.da dependsonlyon boundaryLine notontheparticularsurface used
II dat 0
foranyclosed surface
Integration by parts f g de fgk f.bg
f dx
Cartesian dt dxxntdyy.dzE dt
dxdydz.us
Cylindrical dt ds 5 soldt dzd de
sdsdddz.us
Spherical dt drr rd00 rsinoddodt tsinodrdo.cl0
,Deltafunction ID SU g and Skelet
fix SH flash
3D 8h SexSly Sk and Mde 1
spa
ffHS't âde p
g 4 8127
Helmholtz theorem É if
unambiguously defined 7 E HE specified
and boundary conditions given no r 0
conventioneel minus
If Ix F Ö F TV Fis F or B
Theoremt Curtlessirrotational field
px F Ö everywhere
F de indep ofpath
6 Fde 0 foranyclosedloop
F is gradient of some scalarfunction F TV
If 7E 0 F Pidsome vectorpotential
Theorem 2 Divergenceless solenoidfields
7 F D everywhere
Strada indep ofsurface
EDE 0 foranyclosedsurface
F is the cutofsomevectorfunction F Txt
Always F TV Txt
, Chapter 2
Coulomb's law F I
Electric field E t.IE z
Q is the testcharge
9 are the source charges
Continuous Charge Distribution E Ii f Etr Idq
Along luie dgn IN
i gg 59 Elites Ide
f 9 ij
the prime denotes the source charges Q
p
Field lines density indicates strength density Énn
i
point charge or as vector
If q has 8 than 2g has16
From to
Don't terminate midair but can ago to a
NO INTERSECTIONS
t to source
Flux of É through surface S Eet f E dè fieldlines passing 5
dat product
Gauss's law E dat Itota enclosed charge
het's turn in different.at iso integral
r Edat E de
Using Que Ddt
ME
v e L
t.E e.IT E strijde
o.tt Sir
Integralformbyfareasiestway to compute È if there's symmet
, Example Gaussian surface sphere cylinderor plane
seks
Ë
te
E dij Oey Qen Pdi fles Sds d 2 Kl Sids
kls
We have
IE HETda LEIIda LEI zal
IE tzsl E.ES kls3
E ts
Look at examples 2.5 and 2.6 in the book
strokestheorem
E de 0 y Ê 0
hold for any stal charge distribution
Potential
Define F È dt electricpotential 0 is referencepoint
potentialdifference Kb à È.at Tv
È i convention V of positivecharge positive
Potential obeys superposition V VrtVrt
v NE Volt
Potential not per se zero if E o at tatplace f
Poisson's equation IV
Laplace's equation TV 0 for 8 0
This tells how to compute V from given to or 8
Look at example 2.8
For given 8 and symmetry it'smostconvenient tofirst calculate thepotential
P
Triangle En
V
S
E N Én E
SE
Atboundary the normalcomponent of E is discontinuousby
E
Normal derivative In OV in
Work and Energy
F DE W Fd QIE.at Q VIA Na
Forceinapp dir
Path indep Conservative
Hu example
KB Via t
Work neededtoassemble configuration
I work of pointcharges W t TÉ4VII
yougetbackwhendismantled
t potentialenergystored
L IPVde W Gft Vdl W InGouda
W Effende alt space
doesn't takeintoaccountthework necessary tomadetheporiecharge
k more complete totalenergy stored
Use for point charges only
Where is energy stored 41 In field TE energyperunitvolume
2 In Charge IPV energyperunitvolume
1 a NO Superposition I Crossterms Wij WetW 1 EoSÉ Ècht
e.g Doublecharge quadruple totalenergy
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sdeloijer. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €9,99. Je zit daarna nergens aan vast.