100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary (Bio)Molecular Spectroscopy €5,48
In winkelwagen

Samenvatting

Summary (Bio)Molecular Spectroscopy

 32 keer bekeken  1 keer verkocht

Summary of 35 pages for the course Molecular Spectroscopy at UvA (Complete summary)

Voorbeeld 4 van de 35  pagina's

  • 11 september 2020
  • 35
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
analyticalsciences
Summary Biomolecular Spectroscopy

Lecture 1: Introduction
Optical spectroscopy:
- Using photons (light) to gain information on molecules
- Interaction of electromagnetic radiation with matter
- Purposes:
o Identify compounds
o Quantitation of compounds
o Study of physicochemical properties of compounds and their surrounding

Interaction of light with matter:
- No interaction
- Light is absorbed → intensity of light going down
o All light is absorbed except the color which is visible
- Light is transmitted
o Daylight is transmitted through window (UV light is not transmitted by glass)
- Light is reflected or scattered → change of direction of light
o Reflection makes things visible (daylight reflects)
o Glass of milk very bright white as light is scattered in all directions

Electromagnetic radiation:




- UV: 10 – 380 nm
- Visible: 380 – 780 nm
- IR: 1 – 200 nm
- IR not visible → not enough energy to see it
- UV light → much higher energy but still not visible → eyes have a layer which is not
transparent for UV light (prevent damage)

Interactions used for spectroscopy:
- UV/VIS radiation: pi-electrons and free electron pairs → transitions between
electronic energy states
- IR radiation: molecular vibrations → transitions between vibrational energy states
- Radio radiation: nuclear spin of atoms → transition between spin energy states

,Electron spectroscopy: UV/Vis (aborption) and fluorescence (emission)
Vibrational spectroscopy: IR (absorption of IR) and Raman (scatter of UV, Vis or IR)

Properties of light:
- Oscillation of electric field propagating through space
- Wavelength () = speed (v) / frequency ()
- Energy (E in J per photon) = Plank (h = 6.626*10-34 Js) * frequency ()
- Wavenumber () = 1 / wavelength () in cm-1
- Amplitude: relates to intensity → higher intensity results in larger amplitude
- Often wavelength scale, but from molecular perspective it would be more relevant to
use photon energy (frequency) scales
- Speed of light in vacuum: c = 2.998 x 108 m/s
- Speed of light depends on medium in which it is propagating
- Refractive index: n = c / v
o Air: 1.003
o Water: 1.333
o Glass: 1.5
o Always > 1 → cannot be faster than in vacuum (free space)

Polarization of light:
- For normal unpolarized light: plane of electric field vector is randomly distributed
- Plane-polarized or linearly polarized light: the plane of electric field vector is fixed →
one direction only
- Polarizers: selection from non-polarized light → only transmits light in one plane →
result is plane polarized light
- Polarimetry: measurement of rotation of plane polarized light by optically active
substance
o Determination of chirality, chiral excess, concentration of chiral compound
- Circular polarized light: plane of electric field vector rotates about its propagation
direction
o Can be seen as resultant of two perpendicular
plane-polarized waves with identical frequency
and direction, but a phase difference of 90
o Phase difference 0 – 180: plane-polarized
o Phase difference 0 – 90: elliptically polarized




- Circular dichroism: measurement of difference in absorption of left- and right-
handed circularly polarized light by optically active substance
o Needs chromophore
o Measures difference in absorbance → often very small
o Often used for analysis of protein secondary structure → beta sheets, alpha
helix, random coil → CD spectra will be different

,Reflection and refraction:
- Part of ray reflects on the interface of media of
different refractive index
- Part of ray bends towards normal when it enters
medium of higher refractive index
- Specular reflection: angle of incidence equals
angle of reflection (1 = 3)
- Refraction: Snell’s law:
n1 sin(1) = n2 sin(2)
- Reflection at interfaces causes loss of transmitted light
o % reflectance = ((n2 – n1) / (n2 + n1))2 * 100
o Glass does not transmit 100% of the light
- Reflection at interfaces may cause (partial) polarization
o Increase incident angle → more will be reflected
o Brewster angle: point where no light is reflected
▪ Vertically polarized light is totally transmitted
▪ Reflected beam is fully polarized (horizontally)
- From higher to lower n: total internal reflection




Above critical angle the beam is totally reflected at interface

Applications:
- Rainbow: result of total internal reflection and refraction
- Evanescent wave: light totally reflecting from a surface actually penetrates a very
short distance into the 2nd medium → absorption in 2nd medium leads to decrease in
intensity of reflected beam
o Applications: analysis of thin films, high concentration, solids pastes; selective
measurement of molecules adsorbed on surface, mostly used in IR
spectroscopy using IR transparent medium
- Absorption spectrophotometry: measuring light absorption
o Transmission: intensity going through / intensity going in
o Absorbance A = –log(T) =  * c * l

Lecture 2: Basic aspects
- Rays: straight lines staring at light source vision → diffuse reflection on rough
surfaces
- Waves: diffraction → bending around edges
- Bundle of photons: ‘particles’ without mass, but with energy
- Spectroscopy: one photon collides with one molecule (and absorbs or not)

, Light:
- Wave that passes through vacuum → electricity is able to do that (no mass-waves)
- Electric field E(t) perpendicular to direction of propagation → changing magnitude
and direction
- Perpendicular on E(t), magnetic field H(t) → ring current produces magnet

Photoelectric effect:
- Light beam on method → emitted electrons
- Kin. E is independent of light intensity: KE = ½ mv2 = hv – hv0 v0: threshold freq.
- Electrons are only emitted if wavelength is sufficiently short
o Expected:
▪ Higher intensity: more electrons, higher rate (kin. E)
▪ Change of velocity: no effect on kin. E
o Observed:
▪ Higher intensity: no increase of kin. E
▪ Increase of velocity: kin. E increases
▪ Threshold of velocity: too low → no emitted electrons
- Classical waves: transfer energy from particle to particle
o Rate of transfer  amplitude2
o Intensity = power/area  amplitude2/area
- Electromagnetic wave (light):
o Rate of transfer  energy/photon
o Intensity = number of photons that pass through area in one second
- So only  (=c/) determine energy of photon
o Enhancement of intensity → increase number of photons
- Number of electrons removed depends on light intensity
o Photon energy of 700 nm red light (figure) is
insufficient to remove electron from metal surface
o Light is bundle of photons with energy per photon
determined by wavelength
o Intensity is determined by number of photons
o Upon collision of photon with sufficient energy an
electron exits from the metal

Photon:
𝑚0
- Has no mass → 𝑚 =
√1−𝜈2⁄𝑐2

o As c =  for a photon → would imply that m reaches infinity → unacceptable,
so rest mass m0 = 0
𝐸 𝑚𝑐 2 ℎ𝜈
- Has momentum 𝑚𝑐 = = =
𝑐 𝑐 𝑐


Wave character of particles:
- Nanoscopic scale: light wave has particle character
- Energy is quantitized:
o Photon has particular energy
o Molecule/atom has particular energy; E1, E2, E3, …

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper analyticalsciences. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59804 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,48  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd