python
Latest uploads at python. Looking for notes at python? We have lots of notes, study guides and study notes available for your school.
-
11
- 0
- 0
Majors at python
Notes available for the following studies at python
-
Python 11
Latest notes & summaries python
Dates in Python: 
- Math with Dates 
- Turning dates into strings 
- Adding time to the mix 
- Printing and parsing datetimes 
- Working with durations 
- UTC offsets 
- Time zone database 
- Starting Daylight Saving Time 
- Ending Daylight Saving Time 
- Reading date and time data in Pandas 
- Summarizing datetime data in Pandas 
- Additional datetime methods in Pandas
- Summary
- • 127 pages's •
-
Python•Python
Preview 4 out of 127 pages
Dates in Python: 
- Math with Dates 
- Turning dates into strings 
- Adding time to the mix 
- Printing and parsing datetimes 
- Working with durations 
- UTC offsets 
- Time zone database 
- Starting Daylight Saving Time 
- Ending Daylight Saving Time 
- Reading date and time data in Pandas 
- Summarizing datetime data in Pandas 
- Additional datetime methods in Pandas
Cleaning data in Python: 
- Data type constraints 
- Data range constraints 
- Uniqueness constraints 
- Membership constraints 
- Categorical variables 
- Cleaning text data 
- Uniformity 
- Cross field validation 
- Completeness 
- Comparing strings 
- Generating pairs 
- Linking DataFrames
- Summary
- • 187 pages's •
-
Python•Python
Preview 4 out of 187 pages
Cleaning data in Python: 
- Data type constraints 
- Data range constraints 
- Uniqueness constraints 
- Membership constraints 
- Categorical variables 
- Cleaning text data 
- Uniformity 
- Cross field validation 
- Completeness 
- Comparing strings 
- Generating pairs 
- Linking DataFrames
Introduction to importing data in python: 
- The importance of flat files in data science 
- Importing flat files using NumPy 
- Importing flat files using pandas 
- Introduction to other file types 
- Importing SAS/Stata files using pandas 
- Importing HDF5 files 
- Importing MATLAB files 
- Introduction to relational databases 
- Creating a database engine in Python 
- Querying relational databases in Python 
- Querying relational databases directly with pandas 
- Advanced querying: exploiting...
- Summary
- • 129 pages's •
-
Python•Python
Preview 4 out of 129 pages
Introduction to importing data in python: 
- The importance of flat files in data science 
- Importing flat files using NumPy 
- Importing flat files using pandas 
- Introduction to other file types 
- Importing SAS/Stata files using pandas 
- Importing HDF5 files 
- Importing MATLAB files 
- Introduction to relational databases 
- Creating a database engine in Python 
- Querying relational databases in Python 
- Querying relational databases directly with pandas 
- Advanced querying: exploiting...
Intermediate importing data in Python: 
- Importing flat files from the web 
- HTTP requests to import files from the web 
- Scraping the web in Python 
- Introduction to API's and JSON's 
- API's and interacting with the world wide web 
- The Twitter API and Authentication
- Summary
- • 67 pages's •
-
Python•Python
Preview 4 out of 67 pages
Intermediate importing data in Python: 
- Importing flat files from the web 
- HTTP requests to import files from the web 
- Scraping the web in Python 
- Introduction to API's and JSON's 
- API's and interacting with the world wide web 
- The Twitter API and Authentication
User-defined functions 
Multiple Parameters and Return Values 
Scope and user-defined functions 
Nested functions 
Default and flexible arguments 
Lambda functions 
Introduction to error handling 
Introduction to iterators 
Playing with iterators 
Using iterators to load large files into memory 
List comprehensions 
Advanced comprehensions 
Introduction to generator expressions 
Wrapping up comprehensions and generators 
Using Python generators for streaming data 
Using pandas' read_csv iterato...
- Summary
- • 145 pages's •
-
Python•Python
Preview 4 out of 145 pages
User-defined functions 
Multiple Parameters and Return Values 
Scope and user-defined functions 
Nested functions 
Default and flexible arguments 
Lambda functions 
Introduction to error handling 
Introduction to iterators 
Playing with iterators 
Using iterators to load large files into memory 
List comprehensions 
Advanced comprehensions 
Introduction to generator expressions 
Wrapping up comprehensions and generators 
Using Python generators for streaming data 
Using pandas' read_csv iterato...
Introduction to Seaborn 
Using pandas with Seaborn 
Adding a third variable with hue 
Introduction to relational plots and subplots 
Customizing scatter plots 
Introduction to line plots 
Count plots and bar plots 
Creating a box plot 
Point plots 
Changing plot style and color 
Adding titles and labels 
Using the distribution plot 
Regression Plots in Seaborn 
Using Seaborn Styles 
Colors in Seaborn 
Customizing with matplotlib 
Categorical Plot Types 
Regression Plots 
Matrix Plots 
Using Face...
- Summary
- • 250 pages's •
-
Python•Python
Preview 4 out of 250 pages
Introduction to Seaborn 
Using pandas with Seaborn 
Adding a third variable with hue 
Introduction to relational plots and subplots 
Customizing scatter plots 
Introduction to line plots 
Count plots and bar plots 
Creating a box plot 
Point plots 
Changing plot style and color 
Adding titles and labels 
Using the distribution plot 
Regression Plots in Seaborn 
Using Seaborn Styles 
Colors in Seaborn 
Customizing with matplotlib 
Categorical Plot Types 
Regression Plots 
Matrix Plots 
Using Face...
Datacamp introduction to Data Visualization with Matplotlib: 
- Customizing your plots 
- Small multiples 
- Plotting time-series data 
- Plotting time-series with different variables 
- Annotating time-series data 
- Quantitative comparisons: bar-charts 
- Quantitative comparisons: histograms 
- Statistical plotting 
- Quantitative comparisons: scatter plots 
- Preparing your figures to share with others 
- Sharing your visualizations with others 
- Automating figures from data 
- Where to go n...
- Presentation
- • 129 pages's •
-
Python•Python
Preview 4 out of 129 pages
Datacamp introduction to Data Visualization with Matplotlib: 
- Customizing your plots 
- Small multiples 
- Plotting time-series data 
- Plotting time-series with different variables 
- Annotating time-series data 
- Quantitative comparisons: bar-charts 
- Quantitative comparisons: histograms 
- Statistical plotting 
- Quantitative comparisons: scatter plots 
- Preparing your figures to share with others 
- Sharing your visualizations with others 
- Automating figures from data 
- Where to go n...
Datacamp joining data with pandas: 
- Inner join 
- One to many relationships 
- Merging multiple relationships 
- Left join 
- Other joins 
- Merging a table to itself 
- Merging on indexes 
- Filtering joins 
- Concatenate DataFrames together vertically 
- Verifying integrity 
- Using merge_ordered() 
- Using merge_asof() 
- Selecting data with .Query() 
- Reshaping data with .melt() 
- Course wrap-up
- Presentation
- • 152 pages's •
-
Python•Python
Preview 4 out of 152 pages
Datacamp joining data with pandas: 
- Inner join 
- One to many relationships 
- Merging multiple relationships 
- Left join 
- Other joins 
- Merging a table to itself 
- Merging on indexes 
- Filtering joins 
- Concatenate DataFrames together vertically 
- Verifying integrity 
- Using merge_ordered() 
- Using merge_asof() 
- Selecting data with .Query() 
- Reshaping data with .melt() 
- Course wrap-up
Datacamp data manipulation with Pandas: 
* Introducing DataFrames 
* Sorting and subsetting 
* New columns 
* Summary statistics 
* Counting 
* Grouped summary statistics 
* Pivot tables 
* Explicit indexes 
* Slicing and subsetting with .loc and .iloc 
* Working with pivot tables 
* Visualizing your data 
* Missing values 
* Creating DataFrames 
* Reading and writing CSVs 
* Wrape-up
- Presentation
- • 147 pages's •
-
Python•Python
Preview 4 out of 147 pages
Datacamp data manipulation with Pandas: 
* Introducing DataFrames 
* Sorting and subsetting 
* New columns 
* Summary statistics 
* Counting 
* Grouped summary statistics 
* Pivot tables 
* Explicit indexes 
* Slicing and subsetting with .loc and .iloc 
* Working with pivot tables 
* Visualizing your data 
* Missing values 
* Creating DataFrames 
* Reading and writing CSVs 
* Wrape-up
Datacamp: Intermediate Python 
 
- Basic plots with Matplotlib 
- Histogram 
- Customization 
- Dictionaries, Part 1 
- Dictionaries, Part 2 
- Pandas, Part 1 
- Pandas, Part 2 
- Comparison Operators 
- Boolean Operators 
- if, elif, else 
- Filtering pandas DataFrames 
- while loop 
- for loop 
- Loop Data Structures, Part 1 
- Loop Data Structures, Part 2 
- Random Numbers 
- Random Walk 
- Distribution
- Presentation
- • 204 pages's •
-
Python•Python
Preview 4 out of 204 pages
Datacamp: Intermediate Python 
 
- Basic plots with Matplotlib 
- Histogram 
- Customization 
- Dictionaries, Part 1 
- Dictionaries, Part 2 
- Pandas, Part 1 
- Pandas, Part 2 
- Comparison Operators 
- Boolean Operators 
- if, elif, else 
- Filtering pandas DataFrames 
- while loop 
- for loop 
- Loop Data Structures, Part 1 
- Loop Data Structures, Part 2 
- Random Numbers 
- Random Walk 
- Distribution