100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Zusammenfassung Mathe für Ings 2: Teilbereich 1 3,69 €   In den Einkaufswagen

Zusammenfassung

Zusammenfassung Mathe für Ings 2: Teilbereich 1

 2 mal angesehen  0 mal verkauft

Hi, Hier kannst du dir nur die 1. KK runterladen. Themen sind: Niveaumengen, Partielle Funktionen, Reihen und Folgen, Grenzwerte, Stetigkeit, Partielle Ableitungen, Gradient, Richtungsableitungen, Hessematrix und Definitheit. Schreib mir bei Fragen gerne:) Lass auch gerne eine Bewertung da

vorschau 2 aus 6   Seiten

  • 26. august 2023
  • 6
  • 2022/2023
  • Zusammenfassung
Alle Dokumente für dieses Fach (3)
avatar-seller
faitmarlene
Kurzklausur 1 bis Folie 21 am 03 . 05 .




E-UMGEBUNGEN Mengen

-Umgebungen sind Intervalle (Mengen) ,
welche entweder offen oder geschlossen sein können .




Offen :




Zahlenstrahl (Beispiel in R
·E A
A
I
a + E

irgendeine
Zahl


-
Intervall
offizielle
Definition :

Un(a) =

(keR/-à(s) -> Intervallschreibweise :
(a-Ex , a+ a)

-
Abstandsfuktion
abgeschlossen
:




Zahlenstrahl (Beispiel in R
a a + E
0 a
-

E
irgendeine
Zahl


2) E)
,

offizielle · Ha(a) =
(xeRF - a =

Intervallschreibweise : (a -E a +
-
Definition
Intervall


M
genevell gilt sind
Umgebungen offene Intervalle Normalfall
:



im (im
e-




R2 das
im sind
E-Umgebungen innere von Kreisen

M3 das innere
im sind
E-Umgebungen von
Kugeln
Menge
E radius
=
von
des
a
Kreises
E E
&

E
A




DER
Topologische Eigenschaften von
Mengen
:




Ein Punkt ED heißt innerer Punkt D, Denthalten ist
-Umgebung
a wenn eine die
~ . von es von ä
gibt, ganz in .




heißt offen, jeder Punkt Punkt ist
Bedingung
2 .
D wenn von D ein innerer .
:

Teil des Randes gehört zul
~kein



3 .
Ein Vektor E .
R" .
heißt Randpunkt
.
von D, wenn die
E-Umgebung Pa(b) von 5 mindestens einen Punkt aus D und mindestens einen Punkt


nicht aus D enthällt Die .
Menge aller Randpunkte heißt Rand


enthält
heißtabgeschlossen wennsiealle Randpunkte
4 .
ihre
Bedingung eine
-> ,




heißtbeschränkt wenns stehen
5 .
es

, könnte , a l te
unendlich großen
Menge enthalten sind (bei Megen geht das nicht

D heißt kompakt, beschränkt und ist
6 .
wenn D
abgeschlossen .




Beispiele

{(x y)(x 03 {(x y)/x y , y303
+
my 221 Dz
=


Dn =
, +
y
,
yz ny
,


für offen
bedingung für abgeschlossen bedingung




-
& ·
~ abgeschlossen
Komp
-
und h
ach




- >
⑫ X
~ offen (keine Randpunktel




-

, NIVEAUMENGEN Und PARTIELLE FUNKTIONEN
"Parabel Becher"
Z




E
f(x y) ,
=
x + y2

liegende" Partielle Funktion "fixieren
Il
In der Ebene Parabel :


:


eines Punkten laufen lassen
von nur einer
2
Beispiel :

/(f(n y) ,
=


n + y2 Variablen
23
=
2) {(x y)(x + y
- der "fixirte" Punkt
(r ,



ein
=
Nz =




Nn 13
z
=
E(x y) x2 ,
+ y =




gelassen f(x)
hat die Funktion :
=x -1
3x Gerade
-Tz

13
2
N =
{(x y))
, +2 +
y =
- Einheitskreis
Die sind die auf die X-Y-Ebene projizierten "Kreise"
Y
Niveaumengen



Beispiel Nirlaumengen berechnen und Skizzieren :




-

f(x y) ,
= n -
x
42 ,
z
=

0
, z
=

1
x
, =
2
1
Y
~ Einheitskreis
1 mit r = 1
z = 0 No
=
E(x y)ER(o , = z
= f(x, y)
+x
42E) x
-
=> 0 1 -
x2 + 1
1
= - =




=>
No
=


{(x y)ER),
+2 +
y
=


13



REIHEN UND FOLGEN wiederholung
unedliche
Zahlenfolge
:




heißt
Eine
Zahlenfolge
·


Lunedlich vielen) unedliche
Anordnung von Zahlen .




->
an, 82, 03

Satz von Bolzano-Weierstraß :

&




ol
konvergent :




zahlenfolge nähert sich einem Bestimmten Wert (z . B
. 0,
+ an



Beispiel
:




an
= läuft
gegen
S

divergent :

Zahlenfolge wird immer größer oder kleiner

Beispiel an n
.
3
: =




Grenzwerte berechnen Beispiel :




B
~
2
2) binomische Formel b) .(a+b)
ar

himn
b2
=

-
(n + (a
-
-



I
: -



+
.
1 3.




&




=
n +
1




. (n+ 2
-
n)
. (4+2+n)
+
1a - b) la

n +
1




. (n+ 2
-
n- +



n)
=


(n + 2 +




n+n k+ 2 = neue darstellg
2
.
=



gefunden"
=



n + 2 + n

-
lim
-
2


n + 1 1 muss weiter gekürzt werden
n +
(n + 2 + n) ↓ &




2 . n

.(1 + )
=2 .

N ·
1 + = -
N ·
1 + .
2 n +
=> =

n -

(1 +
2
+ N
n .. +
+ n . (n + +1) 1 +
2
+ 1
z

Grenzwertbetrachtung :




geht 2

3
2 n
. +
->
gegen grenzwert =
lim
:




-
n
1 +
2
+ 1
·geht gegen


#li 5x -> O


5 5
5 => lim =




6 +

-
d
höchste
O

Merke :
wenn Potenz gleich ist, sind die Zahlen davor die Grenzwerte

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer faitmarlene. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 3,69 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
3,69 €
  • (0)
  Kaufen