100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Lecture notes

Bio 101 Chapter 10 Notes

Rating
-
Sold
-
Pages
20
Uploaded on
11-10-2024
Written in
2022/2023

This is a comprehensive and detailed note on Chapter 10 patterns of inheritance. *Essential Study Material!!

Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Module

Document information

Uploaded on
October 11, 2024
Number of pages
20
Written in
2022/2023
Type
Lecture notes
Professor(s)
Prof. tracy
Contains
All classes

Subjects

Content preview

Chapter 10 - Patterns of Inheritance
10.2 Tracking Traits
Early Thoughts about Heredity
● In the nineteenth century, people thought that hereditary material must be some
type of fluid, with fluids from both parents blending at fertilization like milk into
coffee.
● However, the idea of “blending inheritance” failed to explain what people could
see with their own eyes.
● Children sometimes have traits such as freckles that do not appear in either
parent, for example. A cross between a black horse and a white one does not
produce gray offspring.
● At the time, no one knew that hereditary information is divided into discrete units
(genes), an insight that is critical to understanding how traits are inherited.
● Around 1850, Gregor Mendel began an extended series of experiments breeding
pea plants, which vary in traits such as flower color, height, and so on.
● Mendel, an Austrian monk, crossed thousands of plants, and kept careful records
of the traits of parents and offspring.
● Through these experiments, he gained insight into the nature of inheritance.
Mendel’s Pea Plant
● Mendel cultivated the garden pea.
● This species is naturally self-fertilizing, which means its flowers produce male
and female gametes that form viable seeds when they meet up.
● In order to study inheritance, Mendel had to carry out controlled matings
(crosses) between individuals with specific traits.
● First, he removed the pollen-bearing parts (anthers) from pea flowers.
● Removing anthers from a pea flower prevents it from self-fertilizing.
● Second, he cross-fertilized the flowers by brushing their egg-bearing parts
(carpels) with pollen from other plants.
● Third, he collected seeds that formed from the cross-fertilized flowers, planted
them, and recorded the traits of the resulting pea plant offspring .
● Many of Mendel’s experiments started with plants that “breed true” for particular
traits such as white flowers or purple flowers.
● Breeding true for a trait means that, new mutations aside, all offspring have the
same form of the trait as the parent(s), generation after generation.
● For example, all offspring of pea plants that breed true for white flowers also
have white flowers.
● As you will see in the next section, Mendel cross-fertilize pea plants that breed
true for different forms of a trait, and discovered that the traits of the offspring
often appear in predictable patterns.
● Mendel’s meticulous work breeding pea plants and tracking their traits led him to

, conclude (correctly) that hereditary information passes from one generation to
the next in distinct units.
● He published his work in 1866, but apparently it was read by few and understood
by no one at the time.
● In 1871 he was promoted, and his pioneering experiments ended.
● When he died in 1884, he did not know that his work with pea plants would be
the starting point for modern genetics.
Inheritance in Modern Terms
● Today, we know that Mendel’s “hereditary units” are genes. Individuals of a
species share certain traits because their chromosomes carry the same genes.
● Each gene occurs at a specific location on a particular chromosome
● Diploid cells have pairs of homologous chromosomes, so they have two copies of
each gene; in most cases, both copies are expressed at the same level.
● The two copies of any gene may be identical, or they may be different alleles.
Homozygous and Heterozygous
● An individual with the same allele of a gene on both homologous chromosomes
is homozygous for the allele (homo- means “the same”).
● Organisms breed true for a trait because they are homozygous for alleles
governing the trait.
● By contrast, an individual with different alleles of a gene is heterozygous for the
allele (hetero- means “different”).
● A hybrid is a heterozygous individual produced by a cross or mating between
parents that breed true for different forms of a trait.
Genotype and Phenotype
● Homozygous and heterozygous describe genotype, the particular set of alleles
that an individual carries.
● Genotype is the basis of phenotype, which refers to the individual’s observable
traits.
● “White-flowered” and “purple-flowered” are examples of pea plant phenotypes
that arise from differences in genotype.
Dominant and Recessive
● The phenotype of a heterozygous individual depends on how the products of its
two different alleles interact.
● In many cases, the product of one allele influences the effect of the other, and
the outcome of this interaction is reflected in the individual’s phenotype.
● An allele is dominant when its effect masks that of a recessive allele paired with
it.
● A dominant allele is often represented by an uppercase italic capital letter such
as A; a recessive allele, with a lowercase italic letter such as a.
Overall Message
● Genotype refers to the particular set of alleles that an individual carries.

, Genotype is the basis of phenotype, which refers to the individual’s observable
traits.
● A homozygous individual has two identical alleles of a gene. A heterozygous
individual has two nonidentical alleles.
● A dominant allele masks the effect of a recessive allele paired with it in a
heterozygous individual.

10.3 Mendelian Inheritance Patterns
Segregation of Genes into Gametes
● Meiosis separates the homologous chromosomes of a pair and packages each in
a different gamete.
● Thus, alleles on the homologous chromosomes end up in different gametes.
● Let’s use our pea plant alleles for purple and white flowers in an example.
● A plant homozygous for the dominant allele (PP) can only make gametes that
carry the dominant allele P.
● A plant homozygous for the recessive allele (pp) can only make gametes that
carry the recessive allele p.
● If the two homozygous plants are crossed (PP × pp), only one outcome is
possible: A gamete carrying allele P meets up with a gamete carrying allele p.
● All offspring of this cross will have both alleles—they will be heterozygous (Pp).
● A grid called a Punnett square is helpful for predicting the outcome of crosses
like this one.
Monohybrid Crosses
● Mendel did not know what alleles were, but he discovered that they segregate
into gametes and recombine in offspring.
● Experiments called monohybrid crosses were key to this discovery.
● A monohybrid cross is a cross between individuals that are identically
heterozygous for alleles of one gene (Aa × Aa, for example).
● The experiment begins with a cross between individuals that breed true for
different forms of a trait.
● The cross produces F1 (first-generation) hybrid offspring.
● A cross between two of these F1 individuals is the monohybrid cross, and it
produces F2 (second-generation) offspring.
● The frequency at which the two forms of the trait appear among the F2 offspring
offers information about a dominance relationship between alleles governing the
trait.
● A cross between two purple-flowered heterozygous plants (Pp × Pp) offers an
example of a monohybrid cross. Each of these plants makes two types of
gametes: gametes that carry a P allele, and gametes that carry a p allele.
● The two types of gametes can meet up in four possible ways at fertilization.
● Three of the four possible combinations include the dominant allele P. In other

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
anyiamgeorge19 Arizona State University
Follow You need to be logged in order to follow users or courses
Sold
60
Member since
2 year
Number of followers
16
Documents
7001
Last sold
2 weeks ago
Scholarshub

Scholarshub – Smarter Study, Better Grades! Tired of endless searching for quality study materials? ScholarsHub got you covered! We provide top-notch summaries, study guides, class notes, essays, MCQs, case studies, and practice resources designed to help you study smarter, not harder. Whether you’re prepping for an exam, writing a paper, or simply staying ahead, our resources make learning easier and more effective. No stress, just success! A big thank you goes to the many students from institutions and universities across the U.S. who have crafted and contributed these essential study materials. Their hard work makes this store possible. If you have any concerns about how your materials are being used on ScholarsHub, please don’t hesitate to reach out—we’d be glad to discuss and resolve the matter. Enjoyed our materials? Drop a review to let us know how we’re helping you! And don’t forget to spread the word to friends, family, and classmates—because great study resources are meant to be shared. Wishing y'all success in all your academic pursuits! ✌️

Read more Read less
3.4

5 reviews

5
2
4
0
3
2
2
0
1
1

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions