Linear Algebra
Qingwen Hu
Complete Chapter Solutions Manual
are included (Ch 1 to 9)
** Immediate Download
** Swift Response
** All Chapters included
,Contents
Preface ix
1 Vectors and linear systems 1
1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Solving linear systems 11
2.1 Vectors and linear equations . . . . . . . . . . . . . . . . . . 11
2.2 Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Inverse matrices . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Transpose and permutation . . . . . . . . . . . . . . . . . . . 25
3 Vector spaces 31
3.1 Spaces of vectors . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nullspace, row space and column space . . . . . . . . . . . . 35
3.3 Solutions of Ax = b . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Rank of matrices . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Bases and dimensions of general vector spaces . . . . . . . . 45
4 Orthogonality 55
4.1 Orthogonality of the four subspaces . . . . . . . . . . . . . . 55
4.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Least squares approximations . . . . . . . . . . . . . . . . . . 72
4.4 Orthonormal bases and Gram–Schmidt . . . . . . . . . . . . 77
5 Determinants 85
5.1 Introduction to determinants . . . . . . . . . . . . . . . . . . 85
5.2 Properties of determinants . . . . . . . . . . . . . . . . . . . 89
vii
,viii Contents
6 Eigenvalues and eigenvectors 99
6.1 Introduction to eigenvectors and eigenvalues . . . . . . . . . 99
6.2 Diagonalizability . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Applications to differential equations . . . . . . . . . . . . . 111
6.4 Symmetric matrices and quadratic forms . . . . . . . . . . . 119
6.5 Positive definite matrices . . . . . . . . . . . . . . . . . . . . 134
7 Singular value decomposition 141
7.1 Singular value decomposition . . . . . . . . . . . . . . . . . . 141
7.2 Principal component analysis . . . . . . . . . . . . . . . . . . 149
8 Linear transformations 151
8.1 Linear transformation and matrix representation . . . . . . . 151
8.2 Range and null spaces of linear transformation . . . . . . . . 155
8.3 Invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . 158
8.4 Decomposition of vector spaces . . . . . . . . . . . . . . . . . 161
8.5 Jordan normal form . . . . . . . . . . . . . . . . . . . . . . . 164
8.6 Computation of Jordan normal form . . . . . . . . . . . . . . 165
9 Linear programming 173
9.1 Extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 Simplex method . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Simplex tableau . . . . . . . . . . . . . . . . . . . . . . . . . 176
, Chapter 1
Vectors and linear systems
1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Vectors and linear combinations
Exercise 1.1.1.
[ ] [ ]
1 2
1. Let u = , v = . i) Sketch the directed line segments in R2 that
1 3
represents u and v, respectively; ii) Use the parallelogram law to visualize the
] 2u, 2u + 5v and 2v − 5u; iv) Solve the system
vector addition u + v; iii)[ Find
−1
of equations xu + yv = for (x, y) ∈ R2 and draw the row picture and
1
the column picture.
Solution: i)
v = (2, 3)
u = (1, 1)
(0, 0)
FIGURE 1.1: u = (1, 1), v = (2, 3)
ii)
1