100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions for Concise Introduction to Linear Algebra 1st Edition by Hu (All Chapters included)

Rating
-
Sold
-
Pages
191
Grade
A+
Uploaded on
26-10-2024
Written in
2019/2020

Complete Solutions Manual for Concise Introduction to Linear Algebra 1st Edition by Qingwen Hu ; ISBN13: 9780367657703.....(Full Chapters included)...1. Vectors and linear systems 2. Solving linear systems 3. Vector spaces 4. Orthogonality 5. Determinants 6. Eigenvalues and eigenvectors 7. Singular value decomposition 8. Linear transformations 9. Linear programming

Show more Read less
Institution
Concise Introduction To Linear Algebra 1e Hu
Module
Concise Introduction to Linear Algebra 1e Hu











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Concise Introduction to Linear Algebra 1e Hu
Module
Concise Introduction to Linear Algebra 1e Hu

Document information

Uploaded on
October 26, 2024
Number of pages
191
Written in
2019/2020
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Solution Manual for Concise Introduction to
Linear Algebra

Qingwen Hu




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Contents



Preface ix

1 Vectors and linear systems 1

1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Solving linear systems 11

2.1 Vectors and linear equations . . . . . . . . . . . . . . . . . . 11
2.2 Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Inverse matrices . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Transpose and permutation . . . . . . . . . . . . . . . . . . . 25

3 Vector spaces 31

3.1 Spaces of vectors . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nullspace, row space and column space . . . . . . . . . . . . 35
3.3 Solutions of Ax = b . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Rank of matrices . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Bases and dimensions of general vector spaces . . . . . . . . 45

4 Orthogonality 55

4.1 Orthogonality of the four subspaces . . . . . . . . . . . . . . 55
4.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Least squares approximations . . . . . . . . . . . . . . . . . . 72
4.4 Orthonormal bases and Gram–Schmidt . . . . . . . . . . . . 77

5 Determinants 85

5.1 Introduction to determinants . . . . . . . . . . . . . . . . . . 85
5.2 Properties of determinants . . . . . . . . . . . . . . . . . . . 89



vii

,viii Contents

6 Eigenvalues and eigenvectors 99

6.1 Introduction to eigenvectors and eigenvalues . . . . . . . . . 99
6.2 Diagonalizability . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Applications to differential equations . . . . . . . . . . . . . 111
6.4 Symmetric matrices and quadratic forms . . . . . . . . . . . 119
6.5 Positive definite matrices . . . . . . . . . . . . . . . . . . . . 134

7 Singular value decomposition 141

7.1 Singular value decomposition . . . . . . . . . . . . . . . . . . 141
7.2 Principal component analysis . . . . . . . . . . . . . . . . . . 149

8 Linear transformations 151

8.1 Linear transformation and matrix representation . . . . . . . 151
8.2 Range and null spaces of linear transformation . . . . . . . . 155
8.3 Invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . 158
8.4 Decomposition of vector spaces . . . . . . . . . . . . . . . . . 161
8.5 Jordan normal form . . . . . . . . . . . . . . . . . . . . . . . 164
8.6 Computation of Jordan normal form . . . . . . . . . . . . . . 165

9 Linear programming 173

9.1 Extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 Simplex method . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Simplex tableau . . . . . . . . . . . . . . . . . . . . . . . . . 176

, Chapter 1
Vectors and linear systems


1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7




1.1 Vectors and linear combinations
Exercise 1.1.1.
[ ] [ ]
1 2
1. Let u = , v = . i) Sketch the directed line segments in R2 that
1 3
represents u and v, respectively; ii) Use the parallelogram law to visualize the
] 2u, 2u + 5v and 2v − 5u; iv) Solve the system
vector addition u + v; iii)[ Find
−1
of equations xu + yv = for (x, y) ∈ R2 and draw the row picture and
1
the column picture.
Solution: i)


v = (2, 3)




u = (1, 1)


(0, 0)



FIGURE 1.1: u = (1, 1), v = (2, 3)


ii)

1

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mizhouubcca Business Hub
Follow You need to be logged in order to follow users or courses
Sold
2540
Member since
2 year
Number of followers
360
Documents
1606
Last sold
4 hours ago

4.3

444 reviews

5
284
4
76
3
40
2
14
1
30

Trending documents

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions