100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Pearson Edexcel International GCSE Further Pure Mathematics PAPER 1R QP MAY 2024

Rating
-
Sold
-
Pages
32
Grade
A+
Uploaded on
04-10-2024
Written in
2024/2025

Pearson Edexcel International GCSE Further Pure Mathematics PAPER 1R QP MAY 2024

Institution
Pearson Edexcel International GCSE
Course
Pearson Edexcel International GCSE











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Pearson Edexcel International GCSE
Course
Pearson Edexcel International GCSE

Document information

Uploaded on
October 4, 2024
Number of pages
32
Written in
2024/2025
Type
Exam (elaborations)
Contains
Only questions

Subjects

Content preview

surname names


Number Number




Further Pure Mathematics
■ ■


PAPER 1R




Pearson Edexcel International GCSE Further Pure Mathematics PAPER 1R QP MAY 2024
Instructions

•• Use black ink or ball-point pen.
Fill in the boxes at the top of this page with your name,
centre number and candidate number.
•• Answer all questions.
Without sufficient working, correct answers may be awarded no marks.
• Answer the questions
– there may in thethan
be more space spaces
youprovided
need.
• Anything you write on the formulae page will gain NO credit.
You must NOT write anything on the formulae page.


Information

•• The total mark for this paper is 100.
The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.

Advice

•• Read each question carefully before you start to answer it.
Check your answers if you have time at the end.



Turn over


P74099A
©2024 Pearson Education Ltd.
F:1/1/1/1/1/

, International GCSE in Further Pure Mathematics Formulae sheet




DO NOT WRITE IN THIS AREA
Mensuration

Surface area of sphere = 4πr2
Curved surface area of cone = πr  slant height
4
Volume of sphere = πr3
3
Series
Arithmetic series
Sum to n terms, Sn 
n
2a  (n  1)d 
2
Geometric series
a(1  rn )
Sum to n terms, Sn 
(1  r)
a




DO NOT WRITE IN THIS AREA
Sum to infinity, S  r <1
 1 r
Binomial series
n(n  1) n(n  1) (n  r  1)
(1  x)n  1  nx  x2   xr  for x < 1, n 
2! r!

Calculus
Quotient rule (differentiation)
d  f ( x)  f' ( x)g( x)  f( x)g' ( x)

dx g( x) [g( x)]2

Trigonometry
Cosine rule
In triangle ABC: a2 = b2 + c2 – 2bc cos A
sin θ
DO NOT WRITE IN THIS AREA

tan θ 
cosθ
sin(A + B) = sin A cos B + cos A sin B sin(A – B) = sin A cos B – cos A sin B
cos(A + B) = cos A cos B – sin A sin B cos(A – B) = cos A cos B + sin A sin B
tan A  tan B tan A  tan B
tan( A  B)  tan( A  B) 
1  tan A tan B 1  tan A tan B

Logarithms
log x
loga x  b
logb a


2
■■■■

, Answer all ELEVEN questions.

Write your answers in the spaces provided.
DO NOT WRITE IN THIS AREA




You must write down all the stages in your working.


1 Without using a calculator, solve the inequality 50 x  18  6x  5
Give your answer in an exact form with a rationalised denominator.
Show your working clearly.
(4)

............................................................................................................................. .....................................................................................................................



.................................................................................................................................. ................................................................................................................



....................................................................................................................................... ...........................................................................................................



............................................................................................................................................ ......................................................................................................
DO NOT WRITE IN THIS AREA




............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



.................................................................................................................................. ................................................................................................................



....................................................................................................................................... ...........................................................................................................



............................................................................................................................................ ......................................................................................................



................................................................................................................................................. .................................................................................................



......................... ............................................................................................................................. ............................................................................................



............................................................................................................................. .....................................................................................................................
DO NOT WRITE IN THIS AREA




.................................................................................................................................. ................................................................................................................



....................................................................................................................................... ...........................................................................................................



............................................................................................................................................ ......................................................................................................



................................................................................................................................................. .................................................................................................



......................... ............................................................................................................................. ............................................................................................



............................................................................................................................. .....................................................................................................................



(Total for Question 1 is 4 marks)


3
■■■■ Turn over

, 2 Given that
1 5
1 x  x2  ...




DO NOT WRITE IN THIS AREA
3 36
is the binomial expansion, in ascending powers of x, of 1  Ax
n



where A and n are rational numbers,

(a) find the value of A and the value of n
(6)
(b) Hence find the value of the coefficient of x3
p
Give your answer in the form  where p is a prime number and q is an integer.
q (2)

............................................................................................................................. .......................................................................................... ...........................



............................................................................................................................. ............................................................................................... ......................




DO NOT WRITE IN THIS AREA
............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



.................................................................................................................................. ................................................................................................................



....................................................................................................................................... ...........................................................................................................



............................................................................................................................................ ......................................................................................................



................................................................................................................................................. .................................................................................................



......................... ............................................................................................................................. ............................................................................................



............................................................................................................................. .....................................................................................................................



.................................................................................................................................. ................................................................................................................
DO NOT WRITE IN THIS AREA
............................................................................................................................. ................................................................................................................ .....



............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



............................................................................................................................. .....................................................................................................................



.................................................................................................................................. ................................................................................................................



....................................................................................................................................... ...........................................................................................................




4
■■■■

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
papersbybree Yale University
View profile
Follow You need to be logged in order to follow users or courses
Sold
976
Member since
2 year
Number of followers
576
Documents
4229
Last sold
1 month ago
PapersbyBree

All exam Papers Available at an affordable price AQAs,OCRs and Edexcel Exams Worry less as you are guaranteed of success

4.1

223 reviews

5
121
4
52
3
24
2
10
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions