Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Digital Methods theory €6,89   Ajouter au panier

Resume

Summary Digital Methods theory

1 vérifier
 97 vues  5 fois vendu

Samenvatting van alle theoretische lessen (de practica staat in een ander document)

Aperçu 4 sur 158  pages

  • 18 mai 2022
  • 158
  • 2021/2022
  • Resume
Tous les documents sur ce sujet (10)

1  vérifier

review-writer-avatar

Par: juliene • 2 année de cela

avatar-seller
mariederick1
DIGITAL METHODS (THEORY)




Marie De Rick & Britt Moens
(ook credits aan Victor Desmet)
2021-2022

,INHOUDSOPGAVE

1. digital methods: close reading, distant reading and common characteristics of big data 8


situating the course ............................................................................................................................................. 8


close reading (quali) ............................................................................................................................................ 9


distant reading (quanti) .................................................................................................................................... 10


readymade versus custommade data ............................................................................................................... 11


10 characteristics of big data sources ............................................................................................................... 11

big data ......................................................................................................................................................... 11

1. BIg.............................................................................................................................................................. 12

2. always-on .................................................................................................................................................. 13

3. nonreactive ............................................................................................................................................... 13

4. incomplete ................................................................................................................................................ 13

5. Inaccessible ............................................................................................................................................... 14

6. Nonrepresentative .................................................................................................................................... 14

7. Drifting ...................................................................................................................................................... 15

8. Algorithmically confounded ...................................................................................................................... 15

9. Dirty ........................................................................................................................................................... 16

10. sensitive .................................................................................................................................................. 16


Takeaways......................................................................................................................................................... 16


2. computational social science and open science 17


Computational communication science ............................................................................................................ 17


1. Opportunities of computational science for communication science ............................................................ 17

From self-report to real data ........................................................................................................................ 17

From self-report to real behavior. ................................................................................................................ 18

From lab experiments to studies of the actual social environment .............................................................. 21

From small-N to large-N ................................................................................................................................ 22



1

, From solitary to collaboratively .................................................................................................................... 24


2. challenges of computational science for communication science ................................................................. 25

Accessibility of data....................................................................................................................................... 25

Quality of big data (cf. lecture 1) .................................................................................................................. 26

Validity and reliability ................................................................................................................................... 26

Responsible and ethical conduct................................................................................................................... 28

Lacking skills and infrastructure .................................................................................................................... 29


3. Open science.................................................................................................................................................. 30

Computational social science, open science! ................................................................................................ 30

Why open science? ....................................................................................................................................... 30


conclusion.......................................................................................................................................................... 34


recap last week: open science ........................................................................................................................... 34

causes of the replication crisis ...................................................................................................................... 34


4. roadmap ........................................................................................................................................................ 35

Roadmap towards replicable computational social science ......................................................................... 35

Sharing your research design and hypotheses: preregistration ................................................................... 36

Sharing the data: open access to datasets .................................................................................................... 36


Make data reusable – reusable code! ............................................................................................................... 37


3. data visualization 38


Data visualization: Why?................................................................................................................................... 38

Are vaccinated persons more likely to be hospitalized for covid? ................................................................ 38


data science and data visualisation .................................................................................................................. 39


visual displays.................................................................................................................................................... 41

type of displays ............................................................................................................................................. 41


Cognitive Processing of data visualizations....................................................................................................... 42

cognitive processing ...................................................................................................................................... 42



2

, What happens when we see a visualization?................................................................................................ 43

attention ....................................................................................................................................................... 43

display schema .............................................................................................................................................. 44

domain knowledge ........................................................................................................................................ 44


Advantages of data visualization for cognitive tasks ........................................................................................ 45

why use visual displays? ................................................................................................................................ 45


cognitive science and principles of effective graphs ......................................................................................... 48

1. Do not trust your intuitions… .................................................................................................................... 48

2. Test the effectiveness of your display ....................................................................................................... 48

3. Task specificity .......................................................................................................................................... 49


Common uses of Graphs and visuals in computational science ........................................................................ 50

displays to illustrate data… ........................................................................................................................... 50

…But also displays to build algorithms .......................................................................................................... 50


4. Collecting data from the web – data scraping 51


intro ................................................................................................................................................................... 51


DATASCRAPING – WHAT IS THAT? .................................................................................................................... 52


COMMUNICATION SCIENCES EXAMPLES .......................................................................................................... 53

Example 1 ...................................................................................................................................................... 53

Example 2 ...................................................................................................................................................... 54

Example 3 ...................................................................................................................................................... 54


OFTENTIMES: ‘TEXT’ DATA GENERATED BY USERS ONLY.................................................................................. 55


COMMON APPLICATIONS .................................................................................................................................. 55


GENERAL PRINCIPLE .......................................................................................................................................... 57


DATASCRAPING….WHAT ARE THESE DATA THAT WE TALK ABOUT? BUILDING BLOCKS DATA, CODE &

FORMATS .......................................................................................................................................................... 58

Data, coding and data formats ...................................................................................................................... 58



3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur mariederick1. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,89. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

62555 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,89  5x  vendu
  • (1)
  Ajouter