!!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!
VOORKENNIS (vorig semester)
Afgeleiden
Standaardafgeleiden
(a)’ = 0 met a ∈ ℝ 1
(Bgcos x)’ = -
n n-1
√1−x2
(x )’ = n.x met n ∈ ℝ
1
(sin x)’ = cos x (Bgtan x)’ =
1+ x2
(cos x)’ = - sin x
(ex)’ = ex
1
(tan x)’ = 2
(ax)’ = ax. ln a
cos x
1
1 (ln x)’ =
(Bgsin x)’ = x
√1−x2
1
(loga x)’ = met a ∈ ℝ+\0,1
x . ln a
Rekenregels afgeleiden
(a. f(x))’ = a. f’(x) met a ∈ ℝ (f(x) . g(x))’ = f’(x) . g(x) + f(x) . g’(x)
(f(x) + g(x))’ = f’(x) + g’(x) 1 1
( )’ = - . f’(x)
f (x) f (x )2
(f(x) - g(x))’ = f’(x) - g’(x)
f (x) f ’( x) .g( x) – f ( x).g’(x)
( )’ =
g(x) g (x)2
Kettingregel
(g(f(x)))’ = g’(f(x)) . f’ (x) -> g afleiden en tussen haakjes fx gwn tussen
haken laten staan en dan * de afgeleide fx
Logaritmisch afleiden -> doel bereikt bij stap 2: onbekende uit exponent gehaald bv y= (4x+3) sin x
1) neem ln van beide leden Ln y = ln ((4x+3)sin x)
2) pas eig van ln toe: ln(ab) = b. lna Ln y = sin x. ln (4x+3)
'
3) bereken de afgeleiden van RL y
4) breng y (noemer) naar RL zodat y’= y. … (Ln y)’ = (sin x. ln (4x+3))’ -> = ... (zie WK)
y
5) vervang y door de opgave y’ = y. …
y’ = (4x+3)sin x . …
Voorkennis LET OP:
'
Vergeet niet bij afgeleiden dat: Let op bij bv ln ( xyz) x -> met kettingregel:
1 yz
(x1)’ = 1 want 1.x1-1 = 1.x0 = 1 !! (zie ook->) ¿ . yz=
xyz xyz
Voorkennis LET OP => is logisch -> TIP vereenvoudig bij oef IFS NIET te veel!!
Formularium 1
, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!
2
Nooit uit noemer en breuk schrappen wnr 2 xy − y + 2 x
onbekende niet bij elke term staat bij + of - is NIET gelijk aan
x2 −2 xy +2 y
2 xy .2 x 2x
-> wel bij maal en gedeeld door! isWEL gelijk aan
3 y . 2 xy 3y
AFLEIDEN VAN IMPLICIETE FUNCTIES (H1)
Impliciete functies
STELLING Impliciete functie stelling F(x,y) = 0
Wanneer de vergelijking van een functie met één onafhankelijke veranderlijke gegeven is in een
impliciete vorm F(x,y)=0, dan kan de afgeleide van de (eventuele onbekende) expliciete vorm
y=f(x) in een punt x0 gevonden worden als:
'
' −F x ( x 0 , y 0 )
f ( x 0 )= '
F y ( x0, y0)
met y0 bepaald door F(x0,y0) = 0 (-> moet op de kromme liggen)
Op voorwaarde dat de partiële afgeleide F’y verschilt van 0 (bcs noemer moet altijd ≠0)
STELLING Impliciete functie stelling F(x,y,z) = 0
Wanneer de vergelijking van een functie met twee onafhankelijke veranderlijke gegeven is in een
impliciete vorm F(x,y,z)=0, dan kan de afgeleide van de (eventuele onbekende) expliciete vorm
z=f(x,y) in een punt (x0,y0) gevonden worden als:
'
' −F x ( x 0 , y 0 , z 0 )
f x ( x 0 , y 0 )= '
F z ( x0 , y0 , z0 )
'
' −F y ( x 0 , y 0 , z0 )
f y ( x 0 , y 0 )= '
F z ( x0 , y0 , z0 )
met z0 bepaald door F(x0,y0,z0) = 0 (-> moet op oppervlakte liggen)
Op voorwaarde dat de partiële afgeleide F’z verschilt van 0 (bcs noemer moet altijd ≠0)
STELLING Impliciete functie stelling F(x1, x2, x3,…,xn, z)= 0
Wanneer de vergelijking van een functie met n onafhankelijke veranderlijke gegeven is in een
impliciete vorm F(x1, x2, x3,…,xn, z)=0, dan kan de afgeleide van de (eventuele onbekende)
expliciete vorm z=f(x1, x2, x3,…,xn) in een punt (x1,…,xn,) gevonden worden als:
'
' −F x ( x1 , x2 , … , xn , z 0 )
f x ( x1 , x2 , … , xn )=
F' z ( x 1 , x 2 , … , x n , z 0 )
met z0 bepaald door F(x1, x2, x3,…,xn, z)=0
Op voorwaarde dat de partiële afgeleide F’z verschilt van 0 (bcs noemer moet altijd ≠0)
Vergelijkingen van een raaklijn en van een raakvlak
EIG Raaklijn – expliciet voorschrift
Beschouw een afleidbare functie f en een punt (x 0,y0) op de curve van f. De vergelijking van de
raaklijn aan de curve van f in het punt (x 0,y0) luidt:
Formularium 2
, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!
y− y 0=f ' ( x 0 ) . ( x −x 0 )
met y0 = f(x0)
EIG Raaklijn – impliciet voorschrift
Beschouw een functie van één onafhankelijke veranderlijke met impliciete vergelijking F(x,y) = 0 en
een punt (x0,y0) op de curve van deze functie. De vergelijking van de raaklijn aan de curve in het
punt (x0,y0) luidt:
F ' x ( x 0 , y 0 )( x −x 0 )+ F ' y ( x0 , y 0 ) ( y− y 0 ) =0
met F(x0,y0) = 0
EIG Raakvlak – expliciet functievoorschrift (nu dus functie van 2 veranderlijke)
Beschouw een partieel afleidbare functie f en een punt (x 0,y0,z0) op het oppervlakte met
vergelijking z= f(x,y). De vergelijking vn het raakvlak aan het oppervlakte in het punt punt (x 0,y0,z0)
luidt:
z−z 0=f ' x ( x 0 , y 0 ) . ( x−x 0 ) + f ' y ( x 0 , y 0 ) . ( y− y 0 )
met z0 = f(x0,y0)
EIG Lineaire benadering/ benadering van eerste orde
De beeldwaarde op het raakvlak kan gebruikt worden als benadering voor de werkelijke
functiewaarde. Voor (x,y) in de buurt van (x 0,y0) geldt:
f ( x , y ) ≈ f ( x0 , y 0 ) + f ' x ( x 0 , y 0 ) . ( x −x0 ) + f ' y ( x 0 , y 0 ) . ( y− y 0 )
EIG Raakvlak – impliciet functievoorschrift (nu dus functie van 2 veranderlijke)
Beschouw een functie van twee onafhankelijke veranderlijke, waarvan de vergelijking impliciet
gegeven wordt als F(x,y,z)=0 en en een punt (x 0,y0,z0) op dit oppervlak.De vergelijking van het
raakvlak aan het oppervlakte in het punt P = (x 0,y0,z0) luidt:
F ' x ( x 0 , y 0 , z 0 ) ( x−x 0 ) + F' y ( x 0 , y 0 , z 0 )( y− y 0 ) + F' z ( x 0 , y 0 , z 0 )( z−z 0 ) =0
met F(x0,y0,z0) = 0
Formularium 3