Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Fysica I: Hoofdstuk 9: Impuls €5,44
Ajouter au panier

Resume

Samenvatting Fysica I: Hoofdstuk 9: Impuls

 164 vues  0 fois vendu

Fysica I: Hoofdstuk 9: Impuls C000057A - Universiteit Gent

Aperçu 2 sur 5  pages

  • 14 janvier 2018
  • 5
  • 2017/2018
  • Resume
  • c000057a
Tous les documents sur ce sujet (11)
avatar-seller
vastgoedstudent123
Hoofdstuk 9: Impuls
Impuls = Een vectoriële grootheid gedefinieerd als ‘de impuls v/e voorwerp is het
product van zijn massa en zijn snelheid’ ofwel 𝑝⃗ = 𝑚𝑣⃗.
Opbouw v/d tweede wet van Newton in functie van impuls:
⃗⃗
𝑑𝑣 𝑑𝑝⃗ 𝑑𝑝⃗
- ∑ 𝐹⃗ = 𝑚𝑎⃗ = 𝑚 = . → ∑ 𝐹⃗ = .
𝑑𝑡 𝑑𝑡 𝑑𝑡

Behoud van impuls = De impuls, van 2 botsende voorwerpen, voor botsing is
gelijk aan de impuls na botsing ofwel 𝑚𝐴 ⃗⃗⃗⃗⃗ 𝑣𝐵 = 𝑚𝐴 ⃗⃗⃗⃗⃗
𝑣𝐴 + 𝑚𝐵 ⃗⃗⃗⃗⃗ 𝑣𝐴′ + 𝑚𝐵 ⃗⃗⃗⃗⃗
𝑣𝐵′ , de formule is
enkel geldig als er geen externe krachten werken.
Opbouw van behoud van impuls a.d.h.v. de wetten van Newton:
- Tijdens een botsing veronderstellen we dat de kracht die door een
voorwerp A op een voorwerp B op een willekeurig moment wordt
uitgeoefend gelijk is aan 𝐹⃗ . Volgens de derde wet van Newton geldt dan
dat de kracht die door het voorwerp B op voorwerp A wordt uitgeoefend
gelijk is aan −𝐹⃗ . Tijdens deze korte periode veronderstellen we dat er geen
andere externe/uitwendige krachten werken (of dat 𝐹⃗ zo groot is dat alle
andere externe krachten verwaarloosbaar zijn).
- Volgens de tweede wet van Newton in functie van impuls hebben we dat
⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝
𝐹⃗ = 𝐴 en dat −𝐹⃗ = 𝐵 ⇔ 𝐹⃗ = − 𝐵 .
𝑑𝑡 𝑑𝑡 𝑑𝑡
- Door deze krachten aan elkaar gelijk te stellen krijgen we dat
𝑑𝑝
⃗⃗⃗⃗⃗
𝐴 𝑑𝑝⃗⃗⃗⃗⃗
𝐵 𝑑𝑝⃗⃗⃗⃗⃗
𝐴 𝑑𝑝
⃗⃗⃗⃗⃗
𝐵 𝑑(𝑝
⃗⃗⃗⃗⃗
𝐴 + ⃗⃗⃗⃗⃗)
𝑝𝐵
=− ⇔0= + = .
𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡
- Waaruit dus blijkt dat ⃗⃗⃗⃗⃗ 𝑝𝐵 = 𝑐 𝑡𝑒 en dus dat de totale impuls behouden
𝑝𝐴 + ⃗⃗⃗⃗⃗
blijft.
Opbouw van behoud van impuls voor systemen met een willekeurig aantal
voorwerpen:
- Veronderstel dat 𝑃 de totale impuls v/e systeem met 𝑛 voorwerpen is:
𝑛

𝑃⃗⃗ = 𝑚1 ⃗⃗⃗⃗⃗
𝑣1 + ⋯ + 𝑚𝑛 ⃗⃗⃗⃗⃗
𝑣𝑛 = ∑ ⃗⃗⃗⃗
𝑝𝑖 .
𝑖=1
- Dan kunnen we de afgeleide van 𝑃⃗⃗ in de tijd schrijven als
𝑛 𝑛
𝑑𝑃⃗⃗ 𝑝𝑖
⃗⃗⃗⃗
= ∑ = ∑ ⃗⃗⃗ 𝐹𝑖
𝑑𝑡 𝑑𝑡
𝑖=1 𝑖=1
met ⃗⃗⃗
𝐹𝑖 de netto kracht op het i-de voorwerp.
- Er zijn 2 soorten krachten
o Uitwendige krachten, deze worden van buiten het systeem
uitgeoefend op voorwerpen in het systeem.
o Inwendige krachten, deze worden door voorwerpen in het systeem
uitgeoefend op andere voorwerpen in het systeem.

1

, Volgens de derde wet van Newton komen de inwendige krachten in
krachtparen voor die elkaar telkens opheffen, hierdoor vallen de inwendige
krachten weg waardoor we kunnen stellen dat
𝑛
𝑑𝑃⃗⃗
= ∑ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗
𝐹𝑢𝑖𝑡𝑤 .
𝑑𝑡
𝑖=1

Wet van behoud van impuls = Wanneer de netto uitwendige kracht op een
systeem van voorwerpen gelijk is aan nul, blijft de totale impuls v/h systeem
constant.
OF De totale impuls v/e geïsoleerd systeem van voorwerpen blijft constant.
Impuls blijft behouden in alle soorten botsingen, kinetische energie niet.
Elastische botsing = Een botsing waarbij de totale kinetische energie voor de
botsing gelijk is aan de totale kinetische energie na de botsing. →
1 1 1 1
𝑚 𝑣 2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 .
2 𝐴 𝐴

Opbouw v/d formule voor elastische botsingen in 1 dimensie:
- De formule voor behoud van impuls 𝑚𝐴 𝑣𝐴 + 𝑚𝐵 𝑣𝐵 = 𝑚𝐴 𝑣𝐴′ + 𝑚𝐵 𝑣𝐵′ en voor
1 1 1 1
elastische botsing 2 𝑚𝐴 𝑣𝐴2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 leveren ons samen 2
vergelijkingen op die we kunnen oplossen voor de snelheden na de botsing,
in de veronderstelling dat de massa’s en de snelheden voor de botsing
gekend zijn.
- Allereerst zonderen we bij beide vergelijkingen de massa’s af:
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) (1) en
1 1 1
𝑚 (𝑣 2 − 𝑣𝐴′2 ) = 2 𝑚𝐵 (𝑣𝐵′2 − 𝑣𝐵2 ) waarbij 2 dus wegvalt en we het
2 𝐴 𝐴
merkwaardig product uitwerken wat leidt tot
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ )(𝑣𝐴 + 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵 − 𝑣𝐵′ )(𝑣𝐵 + 𝑣𝐵′ ) (2).
- We delen vergelijking (2) door vergelijking (1) (aangenomen dat 𝑣𝐴 ≠ 𝑣𝐴′ en
𝑣𝐵 ≠ 𝑣𝐵′ ) en bekomen 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ of nog verder uitgewerkt
𝑣𝐴 − 𝑣𝐵 = −(𝑣𝐴′ − 𝑣𝐵′ ).
Voor een eendimensionale botsing tussen 2 gelijke massa’s geldt:
- 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ (1) en zijn equivalent 𝑣𝐴 − 𝑣𝐵 = 𝑣𝐵′ − 𝑣𝐴′ (2).
- De snelheden na de botsing zijn
o (1) + (2) 2𝑣𝐴 = 2𝑣𝐵′ ofwel 𝑣𝐴 = 𝑣𝐵′ .
o (1) – (2) 2𝑣𝐴′ = 2𝑣𝐵 ofwel 𝑣𝐴′ = 𝑣𝐵 .
Voor een eendimensionale botsing tussen 2 ongelijke massa’s, waarbij het
aangestoten voorwerp zich in rust bevindt, geldt:
- Impulsvergelijking 𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) met 𝑣𝐵 = 0 wordt
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 𝑣𝐵′ .




2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur vastgoedstudent123. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,44. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

47561 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€5,44
  • (0)
Ajouter au panier
Ajouté