Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary processing advanced data analysis €3,49
Ajouter au panier

Resume

Summary processing advanced data analysis

 12 vues  0 fois vendu

Summary of the powerpoint of processing.

Aperçu 2 sur 6  pages

  • 8 juin 2024
  • 6
  • 2023/2024
  • Resume
Tous les documents sur ce sujet (19)
avatar-seller
AVL2
Lesson 2: processing principles
Unstructured data
-> data has no pre-defined structure
-> often test-heavy
-> many irregularities

Common data processing steps in data mining
1. Feature extraction: convert the heterogenous data into
numerical features.
-> capture the feature where we are most interested in
-> feature = a question where the response is something that the
computer understands

2. Attribute transformation : alters the data by replacing a selected
attribute by one or more new attributes (functionally dependent on
the original one, to facilitate further analysis)

3. Discretization: continuous variables  discrete/ nominal
attributes/features (BMI -> overweight, obese, not obese)

4. Aggregation: combine 2/more attributes in a single one
-> data reduction, change of scale, more stable data (aggregated
data have less variability)

5. Noise removal: remove random fluctuations in data that hinder the
perception of the true signal

6. Outlier removal: outliers are objects with characteristics that are
considerably different than most of the other objects in the set

7. Sampling: because obtaining/processing the entire set of data of
interest is often too expensive/time consuming
-> sample needs to be representative and contain the same
properties
-> simple random sampling: equal probability of selecting any
particular item
 Sampling with replacement (reuse of an item): objects are not
removed from the population when they are selected for the
sample
-> stratified sampling: split the data into several partitions & then
draw random samples from each partition

8. Handling duplicate data
-> data cleaning
-> for example: same person with multiple email addresses

9. Handling missing values
-> NA

, -> cause: info is not collected, errors are made during an
experiment, attributes may not be applicable to all cases
-> MCAR (missing complete at random): certain values missing
but the fact that they are missing is not related to the features of the
individual (missing a page while filling in a survey)
-> MAR: dataset might be missing but the fact that it is missing is
not random
(Related to the observed data but not to the unobserved data ->
males are less likely to fill in a depression survey, they are missing
because they are male not because they are depressed OR in a
medical study, suppose younger participants are less likely to report
their weight. The missingness of weight data depends on the age of
the participants, which is observed.
-> MNAR: the value of the variable that is missing is related to the
reason why it is missing (-> related to unobserved data: for
example: no income -> related with the missingness because you
just have no income)

How to handle? Ignore the missing value, eliminate data objects,
estimate the missing value

10. Dimensionality reduction: curse of dimensionality =
when dimensionality increases, data becomes increasingly sparse in
the space that it occupies. The higher the dimensionality, the less
meaningful the concept of distance becomes. This makes it hard to
find patterns.
-> sparse matrices are those matrices that have most of their
elements equal to zero. In other words, the sparse matrix can be
defined as the matrix that has a greater number of zero elements
than the non-zero elements.




Purpose:
-> avoid curse of dimensionality
-> reduce amount of time and memory needed by data mining
algorithm
-> allow data to be more easily visualized
-> help to eliminate irrelevant features or reduce noise

Techniques of dimensionality reduction

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur AVL2. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

56326 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,49
  • (0)
Ajouter au panier
Ajouté