Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Résumé ملخص mathématiques 5,46 €
Ajouter au panier

Resume

Résumé ملخص mathématiques

 0 fois vendu

provide well-written provide well-written notes of Mathematics summary for the student of Mathematics summary for student

Aperçu 2 sur 9  pages

  • 21 novembre 2021
  • 9
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (3)
avatar-seller
hamzaboulmane
Logique et
raisonnements

Vidéo „ partie 1. Logique
Vidéo „ partie 2. Raisonnements
Fiche d’exercices ‡ Logique, ensembles, raisonnements


Quelques motivations
• Il est important d’avoir un langage rigoureux. La langue française est souvent ambigüe. Prenons
l’exemple de la conjonction « ou » ; au restaurant « fromage ou dessert » signifie l’un ou l’autre mais pas
les deux. Par contre si dans un jeu de carte on cherche « les as ou les cœurs » alors il ne faut pas exclure
l’as de cœur. Autre exemple : que répondre à la question « As-tu 10 euros en poche ? » si l’on dispose de
15 euros ?
• Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d’une fonction est
souvent expliquée par « on trace le graphe sans lever le crayon ». Il est clair que c’est une définition peu
satisfaisante. Voici la définition mathématique de la continuité d’une fonction f : I → R en un point
x0 ∈ I :
∀ε > 0 ∃δ > 0 ∀x ∈ I (|x − x 0 | < δ =⇒ | f (x) − f (x 0 )| < ε).
C’est le but de ce chapitre de rendre cette ligne plus claire ! C’est la logique.
• Enfin les mathématiques tentent de distinguer le vrai du faux. Par exemple « Est-ce qu’une augmentation
de 20%, puis de 30% est plus intéressante qu’une augmentation de 50% ? ». Vous pouvez penser « oui »
ou « non », mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette
démarche doit être convaincante pour vous mais aussi pour les autres. On parle de raisonnement.

Les mathématiques sont un langage pour s’exprimer rigoureusement, adapté aux phénomènes complexes,
qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider — ou d’infirmer — une
hypothèse et de l’expliquer à autrui.

, LOGIQUE ET RAISONNEMENTS 1. LOGIQUE 2


1. Logique

1.1. Assertions
Une assertion est une phrase soit vraie, soit fausse, pas les deux en même temps.
Exemples :
• « Il pleut. »
• « Je suis plus grand que toi. »
• «2+2=4»
• «2×3=7»
• « Pour tout x ∈ R, on a x 2 > 0. »
• « Pour tout z ∈ C, on a |z| = 1. »

Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions construites à
partir de P et de Q.

L’opérateur logique « et »

L’assertion « P et Q » est vraie si P est vraie et Q est vraie. L’assertion « P et Q » est fausse sinon.
On résume ceci en une table de vérité :
P \Q V F
V V F
F F F

F I G U R E 1.1 – Table de vérité de « P et Q »

Par exemple si P est l’assertion « Cette carte est un as » et Q l’assertion « Cette carte est cœur » alors l’assertion
« P et Q » est vraie si la carte est l’as de cœur et est fausse pour toute autre carte.

L’opérateur logique « ou »

L’assertion « P ou Q » est vraie si l’une (au moins) des deux assertions P ou Q est vraie. L’assertion « P ou
Q » est fausse si les deux assertions P et Q sont fausses.
On reprend ceci dans la table de vérité :

P \Q V F
V V V
F V F

F I G U R E 1.2 – Table de vérité de « P ou Q »

Si P est l’assertion « Cette carte est un as » et Q l’assertion « Cette carte est cœur » alors l’assertion « P ou Q »
est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l’as de cœur).
Remarque.
Pour définir les opérateurs « ou », « et » on fait appel à une phrase en français utilisant les mots ou, et ! Les
tables de vérités permettent d’éviter ce problème.

La négation « non »

L’assertion « non P » est vraie si P est fausse, et fausse si P est vraie.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur hamzaboulmane. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 5,46 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

75282 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
5,46 €
  • (0)
Ajouter au panier
Ajouté