Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Niet-lineair Optimaliseren (FEB22006) 6,99 €   Ajouter au panier

Resume

Samenvatting Niet-lineair Optimaliseren (FEB22006)

 12 vues  2 fois vendu
  • Cours
  • Établissement

Uitgebreide samenvatting van Niet-lineair Optimaliseren (econometrie EUR)

Aperçu 2 sur 10  pages

  • 7 septembre 2022
  • 10
  • 2020/2021
  • Resume
avatar-seller
Week 1
Unconstrained problem
min 𝑓(𝑥) where 𝑥 ∈ ℝ" is a real vector with 𝑛 ≥ 1 components and 𝑓: ℝ" → ℝ is a function
!
(usually smooth)
Smooth function
Function 𝑓 is smooth if it has derivatives of all orders everywhere on its domain. Almost
every function without ‘kinks’ is smooth
Difference inf and min
inf 𝑓(𝑥), largest value 𝑘 such that 𝑓(𝑥) ≥ 𝑘 for all 𝑥 ∈ 𝑆, exists always
#∈%
min 𝑓(𝑥), smallest value 𝑘 such that there exists a 𝑥 ∈ 𝑆 for which 𝑓(𝑥) = 𝑘, may not exist
#∈%
Weierstrass theorem – informal
A continuous function on a restricted domain has both a global maximum and a global
minimum. Restricted domain has to be made formal
Closed and bounded sets
A set is closed if all limit points of the set are contained in the set. Informally: “all borders
are included”.
A set is a bounded set if there exists an 0 < 𝑀 < ∞ such that for every 𝑥 in the set it holds
that −𝑀 ≤ 𝑥& ≤ 𝑀 ∀𝑖. Informally: “the set fits in a box”.
A compact set is one that is both closed and bounded
Weierstrass theorem
A continuous function on a nonempty, closed and bounded (compact) set in ℝ" attains its
global maximum and minimum
Fermat theorem
If 𝑥 ∗ is a local minimizer and 𝑓 is differentiable at 𝑥 ∗ , then ∇𝑓(𝑥 ∗ ) = 0. The Fermat theorem
gives first order necessary condition (FONC) for unconstrained minimization
4-step method
1. Model the problem and establish existence of global minima (Weierstrass theorem)
2. Write down first order necessary conditions (FONC), e.g. using Fermat theorem
3. Investigate all points of interest (points that meet FONC, and boundary points)
4. Give a conclusion
Convex sets
A set 𝑆 ⊆ ℝ" is a convex set if the straight-line segment connecting any two points in 𝑆 lies
entirely inside 𝑆. 𝑥, 𝑦 ∈ 𝑆 ⇒ 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 ∀𝛼 ∈ [0,1]
Function
𝑓 is a convex function if its domain 𝑆 is convex, and 𝑥, 𝑦 ∈ 𝑆 ⇒
𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ∀𝛼 ∈ [0,1].
𝑓 is a convex function if its domain 𝑆 is convex, and 𝑒𝑝𝑖(𝑓) is a convex set (epi = epigraph)
Tests for convexity
Given convex functions 𝑓 and 𝑔:
- 𝑓(𝑥) + 𝑔(𝑥) is convex
- 𝑓(𝐴𝑥 + 𝑏) is convex
- 𝛼𝑓(𝑥) is convex ∀𝛼 ≥ 0
- max{𝑓(𝑥), 𝑔(𝑥)} is convex (may ruin smoothness)
- 𝑔N𝑓(𝑥)O is convex if 𝑓 is convex and 𝑔 is convex and nondecreasing on ℝ → ℝ
- Given concave function ℎ: −ℎ(𝑥) is convex

, Hessian
Given a twice differentiable function 𝑓 on domain 𝑆, the Hessian ∇( 𝑓(𝑥) is defined by
𝜕2 𝑓 𝜕2 𝑓 𝜕2 𝑓
⎡ 𝜕𝑥2 ⋯ ⎤
𝜕𝑥1 𝜕𝑥2 𝜕𝑥1 𝜕𝑥𝑛
⎢ 21 ⎥
𝜕 𝑓 𝜕2 𝑓 𝜕2 𝑓
⎢ ⋯ ⎥
∇( 𝑓(𝑥) = ⎢𝜕𝑥2 𝜕𝑥1 𝜕𝑥22 𝜕𝑥2 𝜕𝑥𝑛 ⎥
⎢ ⋮ ⋮ ⋱ ⋮ ⎥
⎢ 𝜕2 𝑓 𝜕2 𝑓 𝜕2 𝑓 ⎥
⎣𝜕𝑥𝑛 𝜕𝑥1 𝜕𝑥𝑛 𝜕𝑥2 ⋯ 𝜕𝑥2𝑛 ⎦
(
If its domain 𝑆 is convex, and ∇ 𝑓(𝑥) is positive semidefinite for all 𝑥 ∈ 𝑆, then 𝑓 is a convex
function. That is, all eigenvalues of ∇( 𝑓(𝑥) are nonnegative.
If its domain 𝑆 is convex, and ∇( 𝑓(𝑥) is positive definite for all 𝑥 ∈ 𝑆, then 𝑓 is a strict
convex function. That is, all eigenvalues of ∇( 𝑓(𝑥) are positive
Quadratic forms
)
𝑓(𝑥) = ( 𝑥 * 𝐴𝑥 + 𝑏 * 𝑥 + 𝑐, with 𝐴 symmetric. ∇𝑓(𝑥) = 𝐴𝑥 + 𝑏 and ∇( 𝑓(𝑥) = 𝐴. A quadratic
form is convex ⟺ 𝐴 positive semidefinite is, and strictly convex ⟺ 𝐴 positive definite is
Local is global
For unconstrained convex problems: ‘local is global’
Convex Fermat theorem
Let 𝑓 be a convex, differentiable function. If there exists a 𝑥 ∗ such that ∇𝑓(𝑥 ∗ ) = 0, then 𝑥 ∗
is the global minimizer of 𝑓. The convex Fermat theorem gives the first order sufficient
conditions for unconstrained minimization
Shortcut 4-step method
You can assume there exists a minimum by skipping Weierstrass. Then, show that there is a
point that meets the sufficient conditions, by the convex Fermat theorem. If you can find
these points, you were right by assuming there exists a minimum
Subgradients
Let 𝑓 be a convex function on domain 𝑆, then 𝑟 is a subgradient of 𝑓 at point 𝑥 if
𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑟 * (𝑦 − 𝑥) ∀𝑥, 𝑦 ∈ 𝑆. The gradient is a subgradient. The set of all
subgradients at point 𝑥 is called the subdifferential of 𝑓 at 𝑥, denoted by 𝜕𝑓(𝑥)
Convex Fermat theorem revisited
Let 𝑓 be a convex function. If there exists a 𝑥 ∗ such that 0 ∈ 𝜕𝑓(𝑥 ∗ ), then 𝑥 ∗ is the global
minimizer of 𝑓. This is the convex Fermat theorem generalized to non-differentiable
functions
Subdifferential calculus
Given convex functions 𝑓 and 𝑔:
- If 𝑓 is differentiable then 𝜕𝑓(𝑥) = ∇𝑓(𝑥)
- 𝜕(𝛼𝑓)(𝑥) = 𝛼𝜕𝑓(𝑥) for all 𝛼 ≥ 0
- 𝜕(𝑓 + 𝑔)(𝑥) = 𝜕𝑓(𝑥) + 𝜕𝑔(𝑥) (Minkowski sum)
- 𝜕N[|. |[O(0) = 𝐷" (unit ball in dimension 𝑛)
- 𝜕(max{𝑓, 𝑔})(𝑥) = 𝑐𝑜N𝜕𝑓(𝑥) ∪ 𝜕𝑔(𝑥)O if 𝑓(𝑥) = 𝑔(𝑥), 𝑐𝑜(. ) is the convex hull

Week 2
Bisection method
Method to find a local minimum of a continuously differentiable function 𝑓: ℝ → ℝ in
domain [𝐿, 𝑈], given that 𝑓 + (𝐿) < 0 en 𝑓 + (𝑈) > 0.
,-.
Determine midpoint 𝑀 = ( , evaluate 𝑓 + (𝑀). If 𝑓 + (𝑀) < 0, set 𝐿 = 𝑀, if 𝑓 + (𝑀) > 0, set
𝑈 = 𝑀, if 𝑓 + (𝑀) = 0, set 𝐿 = 𝑀 en 𝑈 = 𝑀. Repeat until range [𝐿, 𝑈] sufficiently small

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur LeonVerweij. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 6,99 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

70055 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
6,99 €  2x  vendu
  • (0)
  Ajouter