Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Tijdreeksanalyse (FEB23001) 6,99 €   Ajouter au panier

Resume

Samenvatting Tijdreeksanalyse (FEB23001)

 32 vues  1 fois vendu
  • Cours
  • Établissement

Uitgebreide samenvatting van Tijdreeksanalyse (econometrie EUR)

Aperçu 2 sur 14  pages

  • 8 septembre 2022
  • 14
  • 2020/2021
  • Resume
avatar-seller
Week 1
Autocorrelation
The correlation between 𝑦! and lagged values of the variable itself, 𝑦!"#
First-order autocorrelation
Because 𝑦"! and 𝑦"!"$ , and the sample variances are almost the same, we can compute the
∑$
!%&('! "'
()('!"# "'()
first-order autocorrelation as 𝜌$$ = ∑$ ()&
!%#('! "'
𝑘!* order autocorrelation
The 𝑘!* order autocorrelation is 𝜌$# = 𝛾$# /𝛾$+ , where 𝛾$# is an estimate of the 𝑘!* order
$
autocovariance, that is, 𝛾$# = , ∑,!-#.$(𝑦! − 𝑦")(𝑦!"# − 𝑦"). The set of all autocorrelations 𝜌$#
for 𝑘 = 1,2, … is called the empirical autocorrelation function (EACF)
White noise
A time series 𝜀! is white noise if it has the following three properties:
- 𝐸(𝜀! ) = 0 𝑡 = 1,2, … , 𝑇
/) /
- 𝐸(𝜀! = 𝜎 𝑡 = 1,2, … , 𝑇
- 𝐸(𝜀0 𝜀! ) = 0 𝑠, 𝑡 = 1,2, … , 𝑇 and 𝑠 ≠ 𝑡
Information set
The information set at time 𝑡 − 1, 𝒴!"$ = {𝑦$ , 𝑦/ , … , 𝑦!"$ }, is the available history of a time
series up to time 𝑡 − 1 is
Conditional distribution
The conditional distribution is 𝑓(𝑦! |𝒴!"$ ). If we know 𝑔(∙) and also the values of the
parameters 𝜃 isn the general time series model. 𝑦! = 𝑔A𝑦!"$ , 𝑦!"/ , … , 𝑦!"1 ; 𝜃C + 𝜀! , then the
conditional distribution 𝑓(𝑦! |𝒴!"$ ) of 𝑦! is the same as the distribution of 𝜀!
First order autoregressive model
The first order autoregressive (𝐴𝑅(1)) model is given by 𝑦! = 𝜙$ 𝑦!"$ + 𝜀! ,
𝑡 = 1,2, … , 𝑇. So, 𝑦! = 𝜙$! 𝑦+ + 𝜙$!"$ 𝜀$ + ⋯ + 𝜙$ 𝜀!"$ + 𝜀! = 𝜙$! 𝑦+ + ∑!"$ 2
2-+ 𝜙$ 𝜀!"2 , where 𝑦+
is a pre-sample starting value
Effect types
When |𝜙$ | < 1, 𝜙$2 → 0 as 𝑖 increases, then the shock 𝜀!"2 has a transitory effect on the time
series 𝑦! . When 𝜙$ exceeds 1, the effect of shocks 𝜀!"2 on 𝑦! increases with 𝑖, then the time
series is called explosive. When 𝜙$ = 1, we have 𝑦! = 𝑦+ + ∑!"$ 2-+ 𝜀!"2 , where 𝜀!"2 has the
same impact on all observations 𝑦!"2.* , ℎ = 0,1, … . Shocks are said to have permanent
effects
(Un)conditional mean
Consider the 𝐴𝑅(1) model with |𝜙$ | < 1. Given that 𝜀! is a white noise series with
𝐸(𝜀! |𝒴!"$ ) = 𝐸(𝜀! ) = 0, the conditional mean of 𝑦! is equal to 𝐸(𝑦! |𝒴!"$ ) = 𝜙$ 𝑦!"$ .
The unconditional mean of the time series is 𝐸(𝑦! ) = 𝜇 = 𝜙$! 𝑦+ and as 𝑡 → ∞, we find
𝐸(𝑦! ) = 0
Intercepts
We can change the (unconditional) mean to nonzero by including an intercept 𝛿 in the model,
3
so 𝑦! = 𝛿 + 𝜙$ 𝑦!"$ + 𝜀! = 𝛿 ∑!"$ 2 ! !"$ 2
2-+ 𝜙$ + 𝜙$ 𝑦+ + ∑2-+ 𝜙$ 𝜀!"2 . As 𝑡 → ∞, 𝐸(𝑦! ) = $"4 . We
#
have that 𝛿 = 𝜇(1 − 𝜙$ ), so 𝑦! − 𝜇 = 𝜙$ (𝑦!"$ − 𝜇) + 𝜀!
Stationarity
The 𝐴𝑅(1) model can be written as 𝑦! = 𝜀! + 𝜋$ 𝜀!"$ + 𝜋/ 𝜀!"/ + ⋯, where 𝜋 = 𝜙$2 and 𝜀! is
a white noise time series. If |𝜙$ | < 1, 𝜋2 → 0 when 𝑖 increases, then the 𝐴𝑅(1) model is called
stationary. It means that the unconditional mean, unconditional variance and
autocorrelations of 𝑦! are constant over time. In 𝐴𝑅(1) model, |𝜙$ | < 1 is a necessary and
sufficient condition for stationarity

, Correlation 𝑦! and shocks
It holds that
- 𝐸(𝑦! 𝜀! ) = 𝜎 /
- 𝐸A𝑦! 𝜀!.5 C = 0 for 𝑗 = 1, 2, …
- 𝐸(𝑦! 𝜀!"# ) ≠ 0 for 𝑘 = 1, 2, …
Variance
The variance of 𝑦! is 𝛾+ = 𝐸 [(𝑦! − 𝐸 [𝑦! ])(𝑦! − 𝐸 [𝑦! ])]. If we assume that 𝐸(𝑦! ) = 0 or
6&
𝛿 = 0, then 𝛾+ = $"4& when |𝜙$ | < 1. Since 𝑉(𝑦! |𝒴!"$ ) = 𝜎 / , we have that the larger |𝜙$ |,
#
the larger 𝛾+ becomes relative to 𝑉(𝑦! |𝒴!"$ )
Autocovariance
The first order autocovariance for an 𝐴𝑅(1) time series is 𝛾$ = 𝜙$ 𝛾+ . The 𝑘!* order
autocovariance of time series 𝑦! is 𝛾# = 𝐸 [(𝑦! − 𝐸 [𝑦! ])(𝑦!"# − 𝐸 [𝑦!"# ])] =
𝐸 [𝜙$ (𝑦!"$ − 𝜇)(𝑦!"# − 𝜇)] = 𝜙$ 𝛾#"$ , for 𝑘 = ⋯ , −2, −1, 0, 1, 2, …
Autocorrelation function (ACF)
7 4 7
The 𝑘!* order autocorrelation of 𝑦! is 𝜌# = 7' = #7'"# = 𝜙$ 𝜌#"$ , so 𝜌# = 𝜙$# . The
( (
autocorrelations of an 𝐴𝑅(1) model with |𝜙$ | < 1, thus decline exponentially towards zero.
It holds that 𝜌+ = 1 and 𝜌"# = 𝜌# for 𝑘 = 1, 2, ….
Autocorrelation with unit roots
The unit root case with 𝜙$ = 1 gives 𝑦! = 𝑦!"$ + 𝜀! . Then we have 𝐸(𝑦! ) = 0,
!"#
𝛾+,! = 𝐸(𝑦!/ ) = 𝑡𝜎 / and 𝛾#,! = 𝐸(𝑦! 𝑦!"# ) = (𝑡 − 𝑘)𝜎 / , so 𝜌#,! = ! , 𝑘 > 0. When 𝑡
becomes large, all (theoretical) autocorrelations 𝜌#,! become equal to 1
Effect sign 𝜙$
When 0 < 𝜙$ < 1, all correlations are positive and decline monotonically. When
−1 < 𝜙$ < 0, all even correlations are positive, all odd correlations are negative, and decline
monotonically towards zero
Lag operator
The so-called lag operator 𝐿 is defined by 𝐿# 𝑦! = 𝑦!"# for 𝑘 = ⋯ , −2, −1, 0, 1, 2, …. 𝐿 can be
used in products and ratios, and in adding and subtracting operations
𝐴𝑅(𝑝) model
If we include 𝑝 lagged variables, we get 𝑦! = 𝜙$ 𝑦!"$ + ⋯ + 𝜙1 𝑦!"1 + 𝜀! . This is an
autoregressive model or order 𝑝. This can be written as 𝜙1 (𝐿)𝑦! = 𝜀! , where 𝜙1 (𝐿) is the AR-
polynomial in 𝐿 of order 𝑝: 𝜙1 (𝐿) = 1 − 𝜙$ 𝐿 − ⋯ − 𝜙1 𝐿1 . The characteristic polynomial is
𝜙1 (𝐿), but with 𝑧 filled in. Roots of this polynomial determine whether the effects of shocks
are transitory or permanent
Roots
The characteristic polynomial of the 𝐴𝑅(1) model is given by 𝜙$ (𝑧) = 1 − 𝜙$ 𝑧, and its root
is 𝑧 = 𝜙$"$ . When 𝜙$ = 1, this solution equals 1, and in that case the AR(1) polynomial is said
to have a unit root (and shocks have permanent effects). When |𝜙$ | < 1, the root of (43)
exceeds 1 (and shocks have transitory effects). Since higher order 𝐴𝑅(𝑝) models have
complex roots, the solution to 𝜙$ (𝑧) = 1 − 𝜙$ 𝑧 is said to be “outside the unit circle” when
|𝜙$ | < 1
Moving average (MA) model
The MA model of order 𝑞, 𝑀𝐴(𝑞), is 𝑦! = 𝜀! + 𝜃$ 𝜀!"$ + ⋯ + 𝜃9 𝜀!"9 . We may rewrite any
𝐴𝑅(𝑝) model in MA form, 𝑦! = 𝜙1 (𝐿)"$ 𝜀! . In an 𝑀𝐴(2) model the variance equals
𝛾+ = (1 + 𝜃$/ + 𝜃// )𝜎 / . For an 𝑀𝐴(𝑞) model it holds that 𝛾# = A∑9"# /
2-+ 𝜃2 𝜃2.# C𝜎 for
𝑘 = 0, 1, … , 𝑞 and 𝛾# = 0 for 𝑘 > 𝑞, with 𝜃+ = 1

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur LeonVerweij. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 6,99 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

70055 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
6,99 €  1x  vendu
  • (0)
  Ajouter