Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Mathématiques - Primitives et intégrales

Note
-
Vendu
-
Pages
23
Publié le
01-03-2023
Écrit en
2020/2021

Ce document est un manuel de mathématiques portant sur le thème du calcul intégral. Il est organisé en trois unités. La première unité est consacrée aux primitives d'une fonction. Elle commence par une définition et des exemples, suivis de propriétés. Elle aborde également les primitives prenant une valeur donnée en un point donné et les primitives des fonctions usuelles. Les opérations sur les primitives sont également étudiées, y compris les règles d'intégration et des exemples. L'unité 2 est centrée sur le calcul intégral. Elle commence par une définition de l'intégrale et des exemples, suivis des propriétés de l'intégrale, y compris la relation de Chasles, l'intégrale et la parité, la linéarité de l'intégrale, l'inversion des bornes, le signe d'une intégrale et la valeur moyenne d'une fonction sur un intervalle borné. Elle étudie également le lien entre primitive et intégrale, ainsi que l'application du calcul intégral au calcul d'aire. L'unité 3 est dédiée à l'intégration par parties (IPP). Elle explique le principe de l'IPP, fournit un exemple de calcul de primitive, et aborde l'itération du procédé. En résumé, ce manuel est un guide complet pour les étudiants de mathématiques qui souhaitent approfondir leur compréhension de la théorie et des applications du calcul intégral. Il contient de nombreux exemples et exercices pour aider les étudiants à développer leurs compétences en la matière.

Montrer plus Lire moins










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
1 mars 2023
Nombre de pages
23
Écrit en
2020/2021
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 6:
Primitives et intégrales

Table des matières

Unité 1 - Primitive d’une fonction ............................................................................................ 2
I - Généralités .................................................................................................................................... 2
1 ) Définition et exemples .................................................................................................. 2
2 ) Propriétés ...................................................................................................................... 3
II - Primitive prenant une valeur donnée en un point donné ........................................................ 4
III - Primitives des fonctions usuelles .............................................................................................. 5
IV - Opérations sur les primitives ................................................................................................... 6
1 ) Règles d’intégration ...................................................................................................... 6
2 ) Exemples ....................................................................................................................... 7
Unité 2 - Calcul intégral .......................................................................................................... 11
I - Définition .................................................................................................................................... 11
1 ) Définition d’une intégrale ........................................................................................... 11
2 ) Exemples ..................................................................................................................... 11
II - Propriétés de l’intégrale ........................................................................................................... 13
1 ) Relation de Chasles ..................................................................................................... 13
2 ) Intégrale et parité ........................................................................................................ 13
3 ) Linéarité de l’intégrale ................................................................................................ 15
4 ) Inversion des bornes ................................................................................................... 15
5 ) Signe d’une intégrale .................................................................................................. 16
6 ) Valeur moyenne d’une fonction sur un intervalle borné............................................. 16
III - Lien entre primitive et intégrale ............................................................................................ 17
IV - Application du calcul intégral au calcul d’aire ..................................................................... 17
1 ) Cas où f ( x ) est positive sur l’intervalle  a ; b ......................................................... 18
2 ) Cas où f ( x ) est négative sur l’intervalle  a ; b ........................................................ 18
3 ) Cas où f ( x ) n’est pas de signe constant sur l’intervalle  a ; b ............................... 18
4 ) Aire comprise entre deux courbes............................................................................... 19
Unité 3 - Intégration par parties (IPP) ................................................................................... 21
I - Principe ....................................................................................................................................... 21
II - Exemple de calcul de primitive ................................................................................................ 22
III - Itération du procédé ............................................................................................................... 22




1

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Unité 1 - Primitive d’une fonction

Cette unité introduit la notion de primitive d’une fonction continue pour ensuite appréhender le calcul intégral.

La recherche de primitive est en lien étroit avec la dérivation des fonctions dont elle est en quelques sortes
l’opération inverse.

Ainsi, déterminer une primitive, c'est un peu comme chercher l'origine d'une dérivée.



I - Généralités

1 ) Définition et exemples

Définition :

Soit f une fonction définie sur un intervalle I .
Une fonction F est une primitive de f sur I , si et seulement si, elle est dérivable sur I et pour tout x de
I :
F '( x) = f ( x)


Exemples :

Pour illustrer cette définition intéressons-nous à quelques exemples :


• Une primitive de la fonction f ( x) = 2 x + 1 est la fonction F ( x) = x 2 + x .

En effet, si on dérive la fonction F ( x ) , on obtient pour tout réel x :

F '( x) = ( x 2 + x ) = 2 x + 1

Ainsi, on retrouve bien la fonction f ( x ) .
La fonction, F1 ( x ) = x + x + 2 constitue également une autre primitive de la fonction f ( x ) (la
2


dérivée de F1 ( x ) étant égale à f ( x ) ).




2

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas



• Une primitive de la fonction g ( x) = 10 x + 3 est la fonction G( x) = 5 x 2 + 3x .

En effet, pour tout réel x : G '( x) = ( 5x 2 ) '+ ( 3x ) ' = 10 x + 3 = g ( x)
Ainsi, pour trouver une primitive F ( x ) d’une fonction f ( x ) on doit démontrer que f ( x ) est la
dérivée de F ( x ) .

Remarque :
Certaines fonctions ne possèdent pas de primitives. De plus, il n’est pas toujours possible d’exprimer par
une fonction usuelle une primitive d’une fonction continue.

2 ) Propriétés

La primitive est tellement liée à la dérivation qu'elle en a adopté les qualités et les défauts. Ainsi :

• Elle est parfaitement compatible avec l'addition, la soustraction et la multiplication par un réel.
C'est-à-dire que si u et v sont deux fonctions alors :


Primitive (u + v) = Primitive (u) + Primitive (v)

Primitive (u - v) = Primitive (u) – Primitive (v)

Primitive (λ u) = λ Primitive (u)

• Mais elle ne laisse passer ni produit, ni l'inversion, ni le quotient, ni la composition.
Ainsi si u et v sont deux fonctions alors :


Primitive ( u v ) n'est pas Primitive ( u ) . Primitive ( v )

Primitive ( 1 / u ) n'est pas 1 / Primitive ( u )

Primitive ( u / v ) n'est pas Primitive ( u ) / Primitive ( v )

Primitive ( u o v ) n'est pas Primitive ( u ) o Primitive ( v )


Théorème :

Toute fonction continue sur un intervalle I admet des primitives sur I .




3
5,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
vivin02pro

Document également disponible en groupe

Thumbnail
Package deal
Pack Mathématiques - Licence Gestion
-
8 2023
€ 43,92 Plus d'infos

Faites connaissance avec le vendeur

Seller avatar
vivin02pro Montpellier I
Voir profil
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
8
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions