Fon ctio ns fR ~ fR
1. Ens emb le de défi nitio n
L'en sem ble de défi nitio n de f est l'ens emb
le des vale urs de x telles qu'o n puis se effe ctive
f(x). Pou r cela, on rega rde les déno min ateu men t calc uler
rs, racin es, quot ients , loga rithm es, tang ente
s .. .
Le prob lème est plus com plex e pour une fonc '
tion défin ie par une intég rale
. lb(x) lb
f (t) dt ou. f (x, t) dt .
a(x) a
(De plus , si l'int égra le est géné ralis ée, il faut
mêm e cher cher les x tels que l'int égra le conv
erge ...) Ell\h 2
2. Mon oton ie
Défi nitio n : f est croi ssàn te sur I un inte rv_alle <=>(va, be I, a< b => f (a)~ f (b))
f est stric tem ent, croi ssan te sur I un intervalle
<=> (va, be I, . a< b => f(a) < f(b) )
Thé orèm e: f est déri vabl e sur I, un inte rval le,
f est croi ssan te sur I <=> f'(x);;,: 0 sur I
Thé orèm e : fdéri vabl e sur I, un inte rval le,
f'(x ) ~ 0 sur I et f' ne s'an nule qu'e n des
poin ts isolés, ⇒ f est stric teme nt croi ssan
te sur 1.
Cett e dern ière imp licat ion n'est pas une équi
vale nce ...
Thé orèm e: Une fonc tion crois s_ante , majo
rée sur [a, b[, adm et une limi te finie en b.
Thé orèm e: f cont inue , stric teme nt mon
De plus , 1-1 est alor s cont inue sur f (1).
oton e sur I un inter valle est une bijec tion
.
de I sur f (I).) k-fc-.l..1-
.
3. Lim ite et con tinu ité
Défi nitio n: limf (x) = l <=> VE> 0, 3a> 0,
x--+a lx-à l ~a ⇒ lf(x) - ll ~E.
Si, de plus ; l = f(a), on dit que f est cont inue
en a.
Défi nitio n: Prolonge1:1ent par continuité
Si lim/ (x) = l, et, si f n'est pas défin ie en
~
x-+a . a, alors qn défi nit f, la prol ongé e par cont inui té de f
.
par :
• f~( ) - l . .
. a - , . ~~1- o-\.. '.c,,. . :
• f(x) =/(x ) quan d x:;:. a. . 0 '.J-
~ Q.:. ~ "° .,Q.,.,. V ,.,. ,.L..J\
,~·
Tes t bien sûr cont inue en a! ~°"'~
1 On a une·autr e défi nitio n de limi te en +oo, ~}.::
qu'o n peut adap ter en -oo. -,.: ..- ~ - ~ . , . u . ~--~~~~n~~-•r·~~
"'
Qr - + ~
_Défi nitio n: lim f (x) = l <=> VE> 0, W ~ ~:L
x--++oo
3A > 0, x ;;,: A => If (x) - li ~ E.
On a enço re une défi nitio n quan d la limi te
est infin ie, qu'o n peut adap ter pou r une limi
te -oo.
Défi nitio n: lim f (x) = +oo <=>VA> 0, 3 '
x--+a a> 0, lx-a l ~ a ⇒ f(x) ~ A.
Et, enfin, une dern ière défi nitio n pou r une
limi te infin ie à l'infin~, qu'o n peut . . .
Déf initi on: lim
x--++oo
f (x) = +oo <=>VA:> 0, 3 B > 0, x~ B⇒ f (x) ;;J!: A.
Thé orèm e: Une fonc tion .adm etta nt une
limi te finie _en un poin t est born ée au vois
inag e de ce poin t.
\
, ~ C)... .,,,.,._,,_~ °"'"~~ tl"-
.. 00
~ fil-) = + = J- ~ ~e1.u ~ ~c.t oœ-~~ Q,.. + C()
ên~-~
~( ).\ -= _::!_ ~ ")_ - 2..
:X ---:1..
fJ t -= IR .\ 1 -1 ]
tJ cc,...lr,.i.,& J.- ~NJ.,l_ n\4\. ] - ~ Î ~ [ v\, J '\-+ Cf' [
~ rl ·~ ~ :
~ ~ r ).' -:: +
.,., ....
oO ~- ~~
..,i-
~\:i.\ -:: - <X·
..., //
0- y f.,n ~J,~..
-r-~\-... ~c,-_ ~- 6 r--. . ,.)- -1-- /YV'c.i~
)1~ ~,..,_ . tîr fNJU-li Q,- + = (J""1. C/\~G.'lü ~cr-,-(_
O ,_ t c,JU. \ ~ ) _, 'ô~- ~ - 2
~= ~H - {.>. -i) -;; ~= ;_,, -: o+ Cc,,, t,.,.. cr~) -(
-\. Cl:)
i.. - 2) ">o
Î). r;r.i_ { J) J- ~ ~ - ~'c,.(J._ ch ~ q,..... + a<)