Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

analyse numerique (methode numerique)

Note
-
Vendu
-
Pages
53
Publié le
22-04-2023
Écrit en
2019/2020

Le cours d'analyse numérique est une discipline mathématique qui traite de la résolution de problèmes mathématiques en utilisant des méthodes numériques. Cette discipline est particulièrement importante dans les domaines de l'ingénierie, de la science et de la finance, où de nombreux problèmes sont difficiles, voire impossibles, à résoudre de manière analytique.

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
22 avril 2023
Nombre de pages
53
Écrit en
2019/2020
Type
Notes de cours
Professeur(s)
Boutagou
Contenu
Toutes les classes

Sujets

Aperçu du contenu

Table des matières

Analyse numérique 1 2

1 Etude d’erreurs 3
1.1 Erreur absolue et relative . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Propagation des erreurs: . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Notation decimales des nombres approchés . . . . . . . . . . . . . . . 6
1.3 Troncature d’un nombre . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Arrodissement d’un nombre . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Résolution d’équation non linéaires f(x)=0 12
2.1 Rappels et notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Séparation des racines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Méthode graphique: . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Méthode de balayage . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Méthodes classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Méthode de dichotomie (où bissection) . . . . . . . . . . . . . . 16
2.4 Méthodes itératives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Méthode de la sécante . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Méthode de point …xe . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Points …xes attractifs et répulsifs . . . . . . . . . . . . . . . . . . 20
2.4.4 Méthode de Newton-Raphson (ou Newton ou des tangantes) 23
2.4.5 Méthode de Newton modi…eé . . . . . . . . . . . . . . . . . . . . 25
2.4.6 Critére d’arret pour la méthode du Newton . . . . . . . . . . . 25


1

, TABLE DES MATIÈRES

2.4.7 Ordre d’une méthode numérique . . . . . . . . . . . . . . . . . . 26

3 Résolution de systémes linéaires 28
3.1 Algèbre linéaire: Les matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Normes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Normes vectorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Normes matricielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Conditionnement d’une matrice . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Notion de préconditionnement . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Résolution d’un systéme par les méthodes de remontée ou de descente . . . . 35
3.5.1 Méthode de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Factorisation en un produit LU du systéme (3.4.1) . . . . . . . . . . . 37
3.5.3 Méthode de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Matices élémentaires de gauss . . . . . . . . . . . . . . . . . . . . . . 41
3.5.5 Méthode de Gauss-Jordon . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.6 Méthode de Cholesky . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Méthodes de résolution itératives . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.1 Critére d’arrét: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliographie 51




2

, Chapitre 1

Etude d’erreurs

On a deux quantités :

p
Exemple 1.0.1 La quantité exacte: 2, 3/4, 2; e; ; log(3); sin(1); cos(3); :::::::

p
Exemple 1.0.2 La quantité approximative où valeur approchée: 3 ' 1:732; e '
2:718; ln(4) ' 1:386:::::

Dé…nition 1.0.1 Soient x un nombre donné et x une valeur approchée de ce
nombre.
1- si x >x, x est dite valeur approchée par excée.
2- si x <x, x est dite valeur approchée par défaut..

p p
Exemple 1.0.3 Considérons le nombre x = 2; on a 1:41 < 2 < 1:42; alors
x = 1:42 est une valeur approchée par excée, et x = 1:41 est une valeur approchée
par défaut.



1.1 Erreur absolue et relative
Dé…nition 1.1.1 On appelle erreur absolue, notée (x); d’un nombre approché x
d’une valeur exacte x, la valeur absolue de la di¤ érence :

(x) = jx xj (1.1.1)


3

, 1.1. Erreur absolue et relative

Si le nombre exact x est connu, on peut dé…nir l’erreur absolue, si x n’est pas
connu , l’erreur absolue n’est donc pas connue, et pour l’apprécier on introduit
la notion de majorant de l’erreur absolue.

Dé…nition 1.1.2 Soient x un nombre donné et x une valeur approchée de ce
nombre. On appelle majorant de l’erreur absolue (x) = jx x j tout nombre x

tel que :
x (x); i.e x x x x +x (1.1.2)

Exemple 1.1.1 soient x = le nombre exact et x = 3:14 le nombre approché de
x , trouver la borne d’erreur absolue?
puisque 3:14 < < 3:15, il vient j x j < 0:01; par conséquent ,on peut poser
x = 0:01; si l’on tient compte de ce qui 3:141 < < 3:142; une meillure estimation
est x = 0:001:

Remarque 1.1.1 1- Plus x est plus petite , plus l’approximation x est pré-
cise , donc toujour en pratique on prend la plus petite x possible (la bornne
supérieur).
2-on écrit : x = x x ou encore x ' x x , qui veut dire x 2 [x x; x +x ]
.
x1 +x2
3- si x1 et x2 sont tels que x1 x x2 , alors x = 2
est une approximation
de x avec un majorant
x2 x1
x = (1.1.3)
2
Dé…nition 1.1.3 L’erreur relative d’un nombre approchée x , notée (x) est le
rapport de l’erreur absolue et du module du nombre exact correspondant,
(x) jx x j
(x) = = (1.1.4)
jxj jxj
on a donc
(x) = jxj : (x) (1.1.5)
(x)
Dé…nition 1.1.4 Un majorant de l’erreur relative noté x (x) = jxj
donc
(x) jxj : x on peut prendre alors comme majorant de l’erreur absolue

x = jxj : x (1.1.6)


4
10,09 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
aymenrahmouni

Faites connaissance avec le vendeur

Seller avatar
aymenrahmouni blida 1 university
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
2
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions