Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

FICHE TD1 Réduction des endomorphismes

Note
-
Vendu
-
Pages
2
Publié le
25-05-2023
Écrit en
2021/2022

Vous trouverez ici une fiche de TD sur la réduction d'endomorphismes

Établissement
Valenciennes (UV)








Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
25 mai 2023
Nombre de pages
2
Écrit en
2021/2022
Type
Autre
Personne
Inconnu

Aperçu du contenu

UPHF - INSA HdF
Licence Mathématiques
2ème année - Semestre 4 année 21/22

Unité d’enseignement : Algèbre 4P
Fiche de TD n˚1 : Polynômes d’endomorphismes, Réduction d’endomorphismes

Exercice 1
Soit A ∈ Mn (R) qui vérifie
A3 − 2A2 − A + 2In = 0n .
1) Montrer que A est inversible et donner son inverse A−1 .
2) Montrer que A est diagonalisable.

Exercice 2
On considère la matrice suivante :  
3 1 −1
A= 0 2 0  .
1 1 1
a) Calculer le polynôme caractéristique de A, noté χA .
b) En déduire que A est inversible et donner A−1 .

Exercice 3
On se place dans le R-espace vectoriel E = R3 usuel et on note C sa base canonique.
On considère l’endomorphisme p de E défini par :

p : (x, y, z) 7−→ (2x + y − z , 3x + 4y − 3z , 5x + 5y − 4z) ,

et on note A la matrice associée à p dans la base C.
1) a) À quoi est égal l’endomorphisme p2 = p ◦ p ?
En déduire les valeurs propres possibles de p et en déduire, sans calcul, que la matrice A est diagona-
lisable.
b) Déterminer le rang de p.
En déduire une matrice diagonale associée à p dans une base que l’on ne cherchera pas à déterminer.
2) a) Déterminer les valeurs propres de A d’une autre façon.
b) Déterminer les sous-espaces propres de A.
c) Déterminer la matrice diagonale semblable à A, qui est donc la matrice associée à p dans une base B
que l’on précisera.

Exercice 4
On appelle suite de Fibonacci la suite réelle (uk ) définie par une récurrence sur deux termes et par la donnée
::::::::::::::::
de ses deux premiers termes, de la manière suivante :

uk+2 = uk+1 + uk , pour tout k ∈ N ,
u0 = 0 , u1 = 1 .

a) Calculer u2 , u3 , u4 et u5 .
 
uk+1
b) Pour tout entier naturel k, on note Vk la matrice colonne Vk = .
uk
Déterminer la matrice A ∈ M2 (R) telle que : ∀k ∈ N , Vk+1 = AVk .
c) Diagonaliser la matrice A.
d) En déduire l’expression de uk en fonction du rang k et des valeurs propres de A.




1
6,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
abelnezla

Faites connaissance avec le vendeur

Seller avatar
abelnezla Valenciennes
Voir profil
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
11
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions