Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Spé Maths 1ère - Suite arithmétiques et géométriques 3,39 €   Ajouter au panier

Interview

Spé Maths 1ère - Suite arithmétiques et géométriques

 9 vues  0 fois vendu

Fiche de révision de spécialité mathématiques (1ère) sur les suites arithmétiques et géométriques. La fiche contient des points méthodes et des exemples concrets, avec application des formules et explications. Contient également une partie sur la somme de termes consécutifs pour les sui...

[Montrer plus]

Aperçu 1 sur 4  pages

  • 2 octobre 2023
  • 4
  • 2022/2023
  • Interview
  • Inconnu
  • Inconnu
  • Lycée
  • Lycée
  • Mathématique
  • 1
Tous les documents sur ce sujet (111)
avatar-seller
leopeyronnet
Suite arithmétiques et géométriques
mercredi 14 décembre 2022 10:13



Suite arithmétique :
Une suite ( ) est une suite arithmétique s'il existe un nombre tel que pour tout entier :

est le terme précédent, par exemple, si on veut , on fait => on prend le terme
précédent de la suite.
Le nombre est appelé la raison de la suite.

Exemple :
Si = 3, et que la raison vaut 5, alors
,

-> On regarde par quel nombre la suite augmente ou diminue.

Attention si on a une suite avec les termes suivants : 2, 4, 8, 16, 32, … Elle n'est pas arithmétique :
On a multiplié par 2 à chaque fois, et non ajouté par 2. Il faut que le nombre que l'on ajoute soi
toujours le même.

Méthode : Pour savoir si une suite est arithmétique, on soustrait avec
- Si on trouve un nombre à la fin, c'est que la suite est arithmétique
- Si on trouve un résultat avec du n, c'est que c'est pas arithmétique

Exemple 1 :

Si on a maintenant une suite définie par . On cherche à savoir si elle arithmétique.
Pour cela on va faire . On va calculer ; On remplace par :




On soustrait les deux :
On voit que les et les s'annulent, donc :



La différence entre un terme et son terme précédent est égale à . Donc est une suite
arithmétique de raison .

Exemple 2 :

On cherche à savoir si la suite est arithmétique ou non, on refait la méthode ci-dessus :

On distribue : ou



On faut la soustraction :




On remarque que la différence n'est pas égale à un nombre constant, donc la suite n'est pas


Maths Page 1

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur leopeyronnet. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 3,39 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67474 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
3,39 €
  • (0)
  Ajouter