Limite, continuité, théorème des valeurs intermédiaires,
dérivabilité, théorèmes de Rolle et des accroissements finis
I Limites Continuités
Exercice 1 :
Soit 𝑓 : ]−1, +∞[ → ℝ la fonction définie par :
𝑥
𝑓 (𝑥 ) =
√1 + 𝑥 2 − √1 + 𝑥
Déterminer les limites de 𝑓, si elle existent, en 0 et en +∞.
Allez à : Correction exercice 1 :
Exercice 2 :
Soit 𝑓 : ℝ∗ → ℝ la fonction définie par
1
𝑓(𝑥 ) = 𝑥𝐸 (𝑥 − )
𝑥
Montrer que 𝑓 admet une limite en 0 et déterminer cette limite.
Allez à : Correction exercice 2 :
Exercice 5 :
Calculer, si elles existent les limites
𝐸(ln(√𝑥)) ln(1 + 𝑥 ) − 𝑥
lim et lim
𝑥→+∞ √𝑥 𝑥→0 𝑥2
Allez à : Correction exercice 5 :
Exercice 6 :
Soit 𝑓 : ℝ → ℝ définie par
√𝑥 2
𝑓 (0) = 0 et 𝑓 (𝑥 ) = 𝑥 + si 𝑥 ≠ 0
𝑥
Déterminer l’ensemble des points où elle est continue.
Allez à : Correction exercice 6 :
Exercice 8 :
Soit 𝑓𝑛 : ℝ → ℝ l’application définie, pour tout 𝑛 ∈ ℕ, par :
𝑓𝑛 (𝑥 ) = ln(1 + 𝑥 𝑛 ) + 𝑥 − 1
1. Montrer qu’il existe 𝑐𝑛 ∈ [0,1] tel que 𝑓𝑛 (𝑐𝑛 ) = 0.
2. Montrer que 𝑓𝑛 est strictement croissante sur ℝ+, en déduire que 𝑐𝑛 est unique.
Allez à : Correction exercice 8 :
Exercice 9 :
Soit 𝑓 la fonction définie sur [1, +∞[ par 𝑓𝑛 (𝑥 ) = 𝑥 𝑛 − 𝑥 − 1, avec 𝑛 ≥ 2.
1. Montrer qu’il existe un unique 𝑥𝑛 > 1 tel que 𝑓𝑛 (𝑥𝑛 ) = 0
2. Montrer que 𝑓𝑛+1 (𝑥𝑛 ) > 0.
3. En déduire que la suite (𝑥𝑛 ) est décroissante et quelle converge vers une limite 𝑙.
4. Déterminer 𝑙.
Allez à : Correction exercice 9 :
Exercice 10 :
Soit 𝑛 ∈ ℕ∗ . Soit 𝑓𝑛 une fonction définie sur [0,1] par :
𝑥
𝑓𝑛 (𝑥 ) = 1 − − 𝑥 𝑛
2
1. Montrer qu’il existe un unique 𝑥𝑛 ∈ [0,1] telle que 𝑓𝑛 (𝑥𝑛 ) = 0.
2. Montrer que pour tout 𝑛 ∈ ℕ∗ , 𝑓𝑛+1 (𝑥𝑛 ) > 0,
3. En déduire que (𝑥𝑛 )𝑛∈ℕ∗ est monotone et qu’elle converge vers une limite 𝑙.
4. Supposons qu’il existe 𝑀 ∈ ℝ tel que pour tout 𝑛 ∈ ℕ∗ 0 ≤ 𝑥𝑛 ≤ 𝑀 < 1
a. Calculer la limite de 𝑥𝑛𝑛 lorsque 𝑛 tend vers l’infini.
b. Montrer qu’il y a une contradiction et en déduire la limite de (𝑥𝑛 )𝑛∈ℕ∗
Allez à : Correction exercice 10 :
Exercice 11 :
1. Soient 𝑎 et 𝑏 des nombres réels tels que 𝑎 < 𝑏 et 𝑓 une application de [𝑎, 𝑏] dans [𝑎, 𝑏]
a) On suppose que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| ≤ |𝑥 − 𝑦|
Montrer que 𝑓 est continue sur [𝑎, 𝑏].
En déduire qu’il existe 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥.
b) On suppose maintenant que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] 𝑥 ≠ 𝑦 on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| < |𝑥 − 𝑦|
Montrer qu’il existe un unique 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥
2. On désigne par 𝑓 l’application de [0,2] dans ℝ, définie pour tout 𝑥 ∈ [0,2] par :
𝑓 (𝑥 ) = ln(2 + 𝑥 2 )
a) On pose
2
,Limites, continuité dérivabilité Pascal Lainé
𝑀 = max |𝑓 ′(𝑥 )|
𝑥∈[0,2]
Montrer que 𝑀 < 1.
b) En déduire, en montrant que 𝑓 ([0,2]) ⊂ [0,2], qu’il existe un unique 𝑥 ∈ [0,2] tel que 𝑓 (𝑥 ) = 𝑥.
On notera 𝑥̃ cet élément.
c) Montrer que l’application 𝑓 est injective.
On définit la suite (𝑥𝑛 )𝑛∈ℕ de nombres réels par la donnée de :
𝑥0 ∈ [0,2] et 𝑥𝑛+1 = 𝑓 (𝑥𝑛 ) si 𝑛 ≥ 0
d) Montrer que si 𝑥0 ≠ 𝑥̃, alors pour tout 𝑛 ≥ 0, 𝑥𝑛 ≠ 𝑥̃.
e) On suppose que 𝑥0 ≠ 𝑥̃. Montrer que pour tout 𝑛 ≥ 0
|𝑥𝑛+1 − 𝑥̃ |
≤𝑀
|𝑥𝑛 − 𝑥̃ |
f) En déduire que pour tout 𝑥0 ∈ [0,2], la suite (𝑥𝑛 )𝑛∈ℕ converge vers 𝑥̃.
On donne 0,69 < ln(2) < 0,7 et 1,79 < ln(6) < 1,8.
Allez à : Correction exercice 11 :
II Continuité dérivabilité
Exercice 12 :
Les fonctions 𝑓, 𝑔 et ℎ: ℝ → ℝ définies par :
3
𝑓 ( 𝑥 ) = 𝑥 |𝑥 | ; 𝑔 (𝑥 ) = 𝑥 5 ; ℎ(𝑥 ) = cos (√|𝑥 |)
Sont-elles dérivables en 0 ?
Allez à : Correction exercice 12 :
Exercice 13 :
Soit 𝑓 la fonction définie sur [0,1] par
0 si 𝑥 = 0
𝑥 ln(𝑥 )
𝑓 (𝑥 ) = {𝑥 + si 0 < 𝑥 < 1
1−𝑥
0 si 𝑥 = 1
1. Montrer que 𝑓est continue sur [0,1].
2. Montrer qu’il existe 𝑐 ∈ ]0,1[ telle que 𝑓 ′(𝑐 ) = 0. (on ne demande pas la valeur de 𝑐).
Allez à : Correction exercice 13 :
Exercice 14 :
Etudier la dérivabilité des fonctions suivantes et calculer la dérivée lorsqu’elle existe :
1. 𝑥 ↦ 𝑓 (𝑥 ) = ln(ln(𝑥 )) si 𝑥 > 1
2
2. 𝑥 ↦ 𝑔(𝑥 ) = ln(𝑒 𝑥 + 1) si 𝑥 ∈ ℝ
1
𝑒𝑥 si 𝑥 < 0
3. 𝑥 ↦ ℎ(𝑥 ) = { 0 si 𝑥 = 0
𝑥 ln(𝑥 ) − 𝑥 si 𝑥 > 0
Allez à : Correction exercice 14 :
Exercice 15 :
Soient 𝑎 et 𝑏 deux réels
Soit 𝑓: ℝ → ℝ la fonction définie par
3
, Limites, continuité dérivabilité Pascal Lainé
sin(𝑎𝑥 )
si 𝑥 < 0
𝑓 (𝑥 ) = { 𝑥
1 si 𝑥 = 0
𝑒 𝑏𝑥 − 𝑥 si 𝑥 > 0
1. A l’aide de la règle de L’Hospital déterminer la limite suivante
cos(𝑥 ) 𝑥 − sin(𝑥)
lim
𝑥→0 𝑥2
2. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit continue sur ℝ.
3. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit dérivable sur ℝ.
Allez à : Correction exercice 15 :
Exercice 16 :
Soit 𝑎 et 𝑏 deux nombres réels. On définit la fonction 𝑓: ℝ → ℝ par
𝑎𝑥 + 𝑏 si 𝑥 ≤ 0
𝑥→{ 1
si 𝑥 > 0
1+𝑥
1. Donner une condition sur 𝑏 pour que 𝑓 soit continue sur ℝ.
2. Déterminer 𝑎 et 𝑏 tels que 𝑓 soit dérivable sur ℝ et dans ce cas calculer 𝑓 ′(0).
Allez à : Correction exercice 16 :
Exercice 17 :
Soit 𝑓: ]0, +∞[ → ℝ l’application définie par
𝑒𝑥
𝑓 (𝑥 ) = 𝑒
𝑥
1. Etudier les variations de 𝑓.
2. Comparer les réels 𝑒 𝜋 et 𝜋 𝑒 .
Allez à : Correction exercice 17 :
Exercice 18 :
On considère l’application 𝑓: [−1,1] → ℝ, définie par :
1
𝑓(𝑥 ) = (√1 + 𝑥 2 − √1 − 𝑥 2 ) , si 𝑥 ≠ 0
{ 𝑥
𝑓 (𝑥 ) = 0 si 𝑥 = 0
1. Montrer que 𝑓 est continue sur [−1,1].
2. Montrer que 𝑓 est dérivable sur ]−1,1[ et déterminer 𝑓′(𝑥) sur ]−1,1[.
3. Montrer que l’application dérivée 𝑓 ′: ]−1,1[ → ℝ est continue sur ]−1,1[.
Quel est l’ensemble des 𝑥 ∈ ]−1,1[ pour lesquels 𝑓 ′(𝑥 ) = 0.
4. Dresser le tableau de variation de 𝑓 et tracer son graphe. En déduire que 𝑓 est injective.
5. On désigne par 𝑓̂ la bijection de [−1,1] sur 𝑓 ([−1,1]) définie par 𝑓̂(𝑥 ) = 𝑓(𝑥 ), pour tout 𝑥 ∈
[−1,1] et on désigne par 𝑓̂ −1 sa bijection réciproque.
′
Justifier l’existence et déterminer (𝑓̂ −1 ) (0).
Allez à : Correction exercice 18 :
Exercice 19 :
Soit 𝑓: ℝ → ℝ la fonction définie par :
𝑒𝑥 si 𝑥 < 0
𝑓 (𝑥 ) = {
𝑎𝑥 2 + 𝑏𝑥 + 𝑐 si 𝑥 ≥ 0
Déterminer 𝑎, 𝑏 et 𝑐 dans ℝ tels que 𝑓 soit 𝐶 2 (c’est-à-dire deux fois dérivables et que la dérivée
seconde soit continue). Est-ce que dans ce cas 𝑓 est 𝐶 3 ?
Allez à : Correction exercice 19 :
4
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur aminall000. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour 4,29 €. Vous n'êtes lié à rien après votre achat.