Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11 17,08 €   Ajouter au panier

Examen

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

1 vérifier
 149 vues  2 fois vendu
  • Cours
  • Solution Manual
  • Établissement
  • Solution Manual
  • Book

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

Aperçu 4 sur 591  pages

  • 11 avril 2024
  • 591
  • 2023/2024
  • Examen
  • Questions et réponses
  • Solution Manual
  • Solution Manual

1  vérifier

review-writer-avatar

Par: josetally • 1 mois de cela

Excellent document. It contains all the solutions.

reply-writer-avatar

Par: solutions • 1 mois de cela

Thanks

avatar-seller
CHAPTER 1


Introduction
1.1

1.




For � > 3∕2, the slopes are negative, therefore the solutions are decreasing. For � < 3∕2, the
slopes are positive, hence the solutions are increasing. The equilibrium solution appears to be
�(�) = 3∕2, to which all other solutions converge.

2.




For � > 3∕2, the slopes are positive, therefore the solutions increase. For � < 3∕2, the slopes
are negative, therefore, the solutions decrease. As a result, � diverges from 3∕2 as � → ∞ if
�(0) 3∕2.
3.




For � > −1∕2, the slopes are negative, therefore the solutions decrease. For � < −1∕2, the
slopes are positive, therefore, the solutions increase. As a result, � → −1∕2 as � → ∞.
1

,2 CHAPTER 1 Introduction


4.




For � > −1∕2, the slopes are positive, and hence the solutions increase. For � < −1∕2, the
slopes are negative, and hence the solutions decrease. All solutions diverge away from the
equilibrium solution �(�) = −1∕2.

5. For all solutions to approach the equilibrium solution �(�) = 2∕3, we must have � ′ < 0 for
� > 2∕3, and � ′ > 0 for � < 2∕3. The required rates are satisfied by the differential equation
� ′ = 2 − 3�.

6. For solutions other than �(�) = 2 to diverge from � = 2, �(�) must be an increasing func-
tion for � > 2, and a decreasing function for � < 2. The simplest differential equation whose
solutions satisfy these criteria is � ′ = � − 2.
7.




For � = 0 and � = 4 we have � ′ = 0 and thus � = 0 and � = 4 are equilibrium solutions. For
� > 4, � ′ < 0 so if �(0) > 4 the solution approaches � = 4 from above. If 0 < �(0) < 4, then
� ′ > 0 and the solutions “grow” to � = 4 as � → ∞. For �(0) < 0 we see that � ′ < 0 and the
solutions diverge from 0.

8.




Note that � ′ = 0 for � = 0 and � = 5. The two equilibrium solutions are �(�) = 0 and �(�) = 5.
Based on the direction field, � ′ > 0 for � > 5; thus solutions with initial values greater than
5 diverge from the solution �(�) = 5. For 0 < � < 5, the slopes are negative, and hence solu-
tions with initial values between 0 and 5 all decrease toward the solution �(�) = 0. For
� < 0, the slopes are all positive; thus solutions with initial values less than 0 approach the
solution �(�) = 0.

, 1.1 3


9.




Since � ′ = � 2 , � = 0 is the only equilibrium solution and � ′ > 0 for all �. Thus � → 0 if the
initial value is negative; � diverges from 0 if the initial value is positive.
10.




Observe that � ′ = 0 for � = 0 and � = 2. The two equilibrium solutions are �(�) = 0 and
�(�) = 2. Based on the direction field, � ′ > 0 for � > 2; thus solutions with initial values
greater than 2 diverge from �(�) = 2. For 0 < � < 2, the slopes are also positive, and hence
solutions with initial values between 0 and 2 all increase toward the solution �(�) = 2. For
� < 0, the slopes are all negative; thus solutions with initial values less than 0 diverge from the
solution �(�) = 0.
11. -(�) � ′ = 2 − �.
12. From Figure 1.1.6 we can see that � = 2 is an equilibrium solution and thus (c) and (j) are
the only possible differential equations to consider. Since ��∕�� > 0 for � > 2, and ��∕�� < 0
for � < 2 we conclude that (c) is the correct answer: � ′ = � − 2.
13. -(�) � ′ = −2 − �.
14. -(�) � ′ = 2 + �.
15. From Figure 1.1.9 we can see that � = 0 and � = 3 are equilibrium solutions, so (e) and
(h) are the only possible differential equations. Furthermore, we have ��∕�� < 0 for � > 3 and
for � < 0, and ��∕�� > 0 for 0 < � < 3. This tells us that (h) is the desired differential equation:
� ′ = � (3 − �).
16. -(�) � ′ = � (� − 3).
17. (a) Let �(�) denote the amount of chemical in the pond at time �. The amount � will be
measured in grams and the time � will be measured in hours. The rate at which the chemical
is entering the pond is given by 300 gal/h ⋅ .01 g/gal = 3 g/h. The rate at which the chemical
leaves the pond is given by 300 gal/h ⋅ �∕106 g/gal = (3 × 10−4 )� g/h. Thus the differential
equation is given by ��∕�� = 3 − (3 × 10−4 )�.
(b) The equilibrium solution occurs when �′ = 0, or � = 104 grams. Since �′ > 0 for � < 104
g and �′ < 0 for � > 104 g, all solutions approach the equilibrium solution independent of the
amount present at � = 0.
(c) Let �(�) denote the amount of chemical in the pond at time �. From part (a) the
function �(�) satisfies the differential equation ��∕�� = 3 − (3 × 10−4 )�. Thus in terms of
the concentration �(�) = �(�)∕106 , ��∕�� = (1∕106 )(��∕��) = (1∕106 )(3 − (3 × 10−4 )�) = (3 ×
10−6 ) − (10−6 )(3 × 10−4 )� = (3 × 10−6 ) − (3 × 10−4 )�.

, 4 CHAPTER 1 Introduction


18. The surface area of a spherical raindrop of radius � is given by � = 4��2 . The volume of a
spherical raindrop is given by � = 4��3 ∕3. Therefore, we see that the surface area � = �� 2∕3
for some constant �. If the raindrop evaporates at a rate proportional to its surface area, then
��∕�� = −�� 2∕3 for some � > 0.
19. The difference between the temperature of the object and the ambient temperature
is � − 70 (� in ◦ F). Since the object is cooling when � > 70, and the rate constant is
� = 0.05 min−1 , the governing differential equation for the temperature of the object is
��∕�� = −.05 (� − 70).

20. (a) Let �(�) be the total amount of the drug (in milligrams) in the patient’s body at any
given time � (hr). The drug enters the body at a constant rate of 500 mg/hr. The rate at which
the drug leaves the bloodstream is given by 0.4 �(�). Hence the accumulation rate of the drug
is described by the differential equation ��∕�� = 500 − 0.4 � (mg/hr).

(b)




Based on the direction field, the amount of drug in the bloodstream approaches the equilib-
rium level of 1250 mg (within a few hours).
21. (a) Following the discussion in the text, the differential equation is �(��∕��) =
�� − � � 2 , or equivalently, ��∕�� = � − �� 2 ∕�.

√ a long time, ��∕�� ≈ 0. Hence the object attains a terminal velocity given by
(b) After
�∞ = ��∕� .
2
(c) Using the relation � �∞ = ��, the required drag coefficient is � = 2∕49 kg/s.

(d)




22.




All solutions become asymptotic to the line � = � − 3 as � → ∞.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur solutions. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 17,08 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

79223 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
17,08 €  2x  vendu
  • (1)
  Ajouter