Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Test_bank_Cal 12,21 €
Ajouter au panier

Examen

Test_bank_Cal

 0 fois vendu
  • Cours
  • Calculus
  • Établissement
  • Calculus

Lecturer: Approved by: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNIVERSITYOFTECHNOLOGY VNUHCM FACULTYOFA...

[Montrer plus]

Aperçu 4 sur 58  pages

  • 27 août 2024
  • 58
  • 2024/2025
  • Examen
  • Questions et réponses
  • Calculus
  • Calculus
avatar-seller
Lecturer: Approved by:



.................................................................................................................

Semester/ Academic year 221 2022-2023
FINAL EXAM
Date 26 December 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 1
VNUHCM Course ID MT1003
FACULTY OF AS Duration 1234 100 mins Question sheet code
Intructions to students: - There are 14 pages in the exam
-This is a closed book exam. Only your calculator is allowed. Total available score: 10.
-For multiple choice questions, you get 0.5 for a correct answer, loose 0.1 for a wrong answer,
no deduction unanswered questions. You choose a correct answer with a tolerance of 0.005 for each question.
-At the beginning of the working time, you MUST fill in your full name and student ID on this question sheet.
-All essential steps of calculations, analyses, justifications and final results are required for full credit.
Any answer without essential calculation steps, and/or analyses, and/or justifications will earn zero mark.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)
Z x
Question 01. [L.O.1.1] Identify all local extrema of f ( x ) = (t2 − 3t + 2)dt.
0
A None of them B (1, 5/6) and (2, 2/3) C (1, 7/6) and (2, 2/3)
D (1, 5/6) E (1, 5/6) and (2, 3/2)
Z x
Question 02. [L.O.1.2] Find the maximum and minimum values of f ( x ) = (3t2 − 6t − 9)dt on the interval
−2
[−2, 2].
A f max = 6; f min = −21 B None of them C f max = 7; f min = −20
D f max = 7; f min = −21 E f max = 6; f min = −20

Zx
πt2
 
Question 03. [L.O.1.2] If f ( x ) = sin dt, find all absolute extrema of f on the interval [0, 3].
2
0 √ √
A f max = f (0); f min = f (2) B f max = f ( 2); f min = f ( 8) C None of them
√ √ √
D f max = f ( 2); f min = f ( 6) E f max = f ( 2); f min = f (2)

Zx
Question 04. [L.O.1.2] If f ( x ) = (4t3 − 4t)dt, find all absolute extrema of f on the interval [−1, 2].
−1
A f max = 9; f min = 1 B f max = 9; f min = 0 C f max = 8; f min = 1
D None of them E f max = 8; f min = 0
3
Zx
dt
Question 05. [L.O.1.1] Find the derivative of the function f ( x ) = √ ·
2 + t3
arctan x


Stud. Fullname: Page 1/14 - Question sheet code 1234

, 2x2 1 1 3x2 1 1
A √ −p · B √ −p ·
2+x 9 2 + (arctan x ) 1 + x2
3 2+ 4+x9 1 + x2
(arctan x )3
3x 2 1 1 3x 2 1 1
C √ −p · D √ −p ·
2 + x9 3 + (arctan x )3 1 + x2 2 + x9 2 + (arctan x )3 1 + x2
E None of them

Z x
sin
p Zy π
Question 06. [L.O.1.1] If f ( x ) = 1 + t2 dt and g(y) = f ( x )dx, find A = g′′
6
√ √0 √ 0

11 17 13 15
A A= B A= C A= D None of them E A=
4 4 4 4
Zx
d √
Question 07. [L.O.1.1] If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
sin x cos x cos x sin x
A A= √ B A= √ C None of them D A= √ E A= √
3 x 2 x 3 x 2 x
Z x
Question 08. [L.O.1.1] Find all values of c such that f (t)dt = x2 + x − 2.
c
A c = −2 B None of them C c = 1 or c = −2 D c = −2 or c = 0 E c=1
Z x
Question 09. [L.O.1.1] Find the approximation of c such that f (t)dt = x3 + 3x2 + 2x − 3.
c
A None of them B c = 0.7717 C c = 0.8717 D c = 0.6717 E c = 0.9717

t2
Z x
Question 10. [L.O.1.2] On what interval is the curve y = dt concave downward?
0 t2 + t + 2
A (−2, 0) B None of them C (−4, 0) D [−2, 0] E [−4, 0]

Question 11.  π [L.O.2.1] Find the antiderivative F ( x ) of the function f ( x ) = sin x + cos x which satisfies the
condition F = 2.
2
A F ( x ) = − cos x + sin x + 3 B F ( x ) = − cos x + sin x + 1 C F ( x ) = − cos x + sin x − 3
D F ( x ) = − cos x + sin x − 1 E None of them

Question 12. [L.O.2.1] If F ( x ) is an antiderivative of the function f ( x ) = ex + 2x which satisfies the condition
3
F (0) = · Find F ( x ).
2
1 1
A F ( x ) = ex + x2 + B F ( x ) = 2ex + x2 − C None of them
2 2
1 5
D F ( x ) = ex + x2 − E F ( x ) = ex + x2 +
2 2
1 f (x)
Question 13. [L.O.2.1] If F ( x ) = is an antiderivative of the function · Find the antiderivative of the
2x2 x

function f ( x ) ln x.
 
ln x 1 ln x 1
Z Z
′ ′
A f ( x ) ln x dx = 2 + 2 + C B f ( x ) ln x dx = − 2
+ 2 +C
x x   x 2x 
ln x 1 ln x 1
Z Z
C f ′ ( x ) ln x dx = − 2
+ 2 +C D f ′ ( x ) ln x dx = − 2
− 2 +C
x x x x
E None of them

1 f (x)
Question 14. [L.O.2.1] If F ( x ) = − 3
is an antiderivative of the function · Find the antiderivative of the
3x x
function f ′ ( x ) ln x.


Stud. Fullname: Page 2/14 - Question sheet code 1234

, ln x 1
Z
A None of them B f ′ ( x ) ln x dx =
3
− 5 +C
x 5x
ln x 1 ln x 1
Z Z
C f ′ ( x ) ln x dx = − 3 + 3 + C D ′
f ( x ) ln x dx = − 3 − 3 + C
x 3x x 3x
ln x 1
Z
E f ′ ( x ) ln x dx = 3 + 3 + C
x 3x
Question 15. [L.O.2.1] If F ( x ) = x2 is an antiderivative of the function f ( x )e2x . Find the antiderivative of the
function
Z
f ′ ( x )e2x . Z

A 2x 2
f ( x )e dx = −2x + 2x + C B f ′ ( x )e2x dx = x2 − 2x + C
Z
C f ′ ( x )e2x dx = −2x2 − 2x + C D None of them
Z
E f ′ ( x )e2x dx = − x2 + x + C

ln x
Question 16. [L.O.2.1] If F ( x ) is an antiderivative of the function f ( x ) = · Calculate I = F (e) − F (1).
x
1 1
A I=2 B I= C None of them D I= E I=e
2 e
Question 17. [L.O.2.1] Find the function f given that the slope of the tangent line to the graph of f at any point
ln x
( x, f ( x )) is f ′ ( x ) = √ and that the graph of f passes through the point (1, 0).
x
√ √ √ √ √ √
A f ( x ) = 3 x. ln x + 4 x + 4 B f ( x ) = 2 x. ln x − 3 x + 4 C f ( x ) = 2 x. ln x − 4 x + 4
√ √
D None of them E f ( x ) = 3 x. ln x − 4 x + 4

Question 18. [L.O.2.1] Find the function f given that the slope of the tangent line to the graph of f at any point
( x, f ( x )) is f ′ ( x ) = xe−3x and that the graph of f passes through the point (0, 0).
xe−3x e−3x 1 xe−3x e−3x 1
A f ( x ) = −2 − + B f ( x ) = −2 − + C None of them
3 9 9 3 3 9
xe − 3x e − 3x 1 xe − 3x e − 3x 1
D f (x) = − − + E f (x) = − − +
3 3 9 3 9 9
Z π Z π
2 2
Question 19. [L.O.1.1] If f ( x ) dx = 5, then calculate I = [ f ( x ) + 2 sin x ] dx.
0 0
π
A 3 B 7 C None of them D 5+ E 5+π
2
Z 2 Z 2 Z 2 h i
Question 20. [L.O.1.1] If f ( x ) dx = 2 and g( x ) dx = −1, then calculate I = x + 2 f ( x ) − 3g( x ) dx.
−1 −1 −1
11 7 17 5
A I= B I= C I= D None of them E I=
2 2 2 2
Z 6 Z 2
Question 21. [L.O.1.1] If f ( x )dx = 12, then calculate I = f (3x )dx
0 0
A I=4 B I=6 C I = 36 D I=2 E None of them

Z1  
1 1
Question 22. [L.O.1.1] If − dx = a ln 2 + b ln 3 where a, b are integers. Which statement is al-
x+1 x+2
0
ways true?
A a+b = 2 B a + 2b = 0 C a + b = −2 D a − 2b = 0 E None of them

Question 23. [L.O.1.1] If the function f ( x ) has continuous derivative on [0, 1] and satisfies the condition 2 f ( x ) +
√ Z 1
3 f (1 − x ) = 1 − x2 then calculate f ′ ( x ) dx.
0




Stud. Fullname: Page 3/14 - Question sheet code 1234

, 3 1
A I=0 B I=1 C I= D None of them E I=
2 2
Question 24. [L.O.1.1] If the function f ( x ) has continuous derivative on [0, 1] and satisfies the condition f (0) =
Z 1h i
x ′
f (1) = 1, and e f ( x ) + f ( x ) dx = ae + b, where a, b are integers. Calculate Q = a2018 + b2018 .
0
A Q=0 B Q=2 C None of them D Q = 22017 + 1 E Q = 22017 − 1

Question 25. [L.O.1.1] If the functions f and g have continuous derivative on [0, 2] and satisfies the condition
Z 2 Z 2 Z 2h i′
f ′ ( x ) g( x ) dx = 2, f ( x ) g′ ( x ) dx = 3, then calculate f ( x ) g( x ) dx.
0 0 0
A I=6 B None of them C I=0 D I=5 E I=1

Question 26. [L.O.1.1] Suppose f ′′ is continuous on [1, 3] and f (1) = 2, f (3) = −1, f ′ (1) = 2, and f ′ (3) = −1.
Z3
Evaluate I = x f ′′ ( x )dx.
1
A I = −1 B I=1 C I = −2 D None of them E I=0
Z x
f (t)
Question 27. [L.O.1.1] If the functions f is continuous on [ a, +∞) ( a > 0) and satisfies the condition dt +
√ a t2
6 = 2 x, then calculate f (4).
A f (4) = 8 B None of them C f (4) = 2 D f (4) = 16 E f (4) = 4
Z x2
Question 28. [L.O.1.1] If the functions f is continuous on [0, +∞) and satisfies the condition f (t) dt =
  0
1
x. sin(πx ), then calculate f .
  4     
1 π 1 π 1 1 1
A f = 1+ B f =− C None of them D f = E f =1
4 2 4 2 4 2 4
Question 29. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
1 √
2
(newton) acts on it. How much work is done in moving it from x = 1 to x = 2 3 − 1.
x + 2x + 5
π 4π
A W= B W=2 C None of them D W= E W = 2π
24 3
Question 30. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
1 13
√ (newton) acts on it. How much work is done in moving it from x = to x = 9.
9 + 8x − x 2 2
π 2π π 4π
A W= B W= C W= D None of them E W=
4 3 3 3
Question 31. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
5x2 + 20x + 6
(newton) acts on it. How much work is done in moving it from x = 3 to x = 5.
x ( x + 1)2
2 × 56 2 × 56 2 × 56
     
3 3 5
A W = + 2 ln B W = + ln C W = + ln
4 37  4 37 4 37
6

1 2×5
D W = + ln E None of them
4 37
Question 32. [L.O.2] When a particle is located a distance x meter from the origin, a force of given F ( x ) =
2x2 − 5x + 2
(newton) acts on it. How much work is done in moving it from x = 1 to x = 5.
x3 + x
5π 5π 9π
A W = 3 ln 5 − 5 arctan 5 + B W = 2 ln 5 − 5 arctan 5 + C W = 3 ln 5 − 5 arctan 5 +
4 4 4

D W = 2 ln 5 − 5 arctan 5 + E None of them
4

Stud. Fullname: Page 4/14 - Question sheet code 1234

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur supergrades1. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 12,21 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

70001 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!

Récemment vu par vous


12,21 €
  • (0)
Ajouter au panier
Ajouté