Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Résumé Suites 2,99 €   Ajouter au panier

Resume

Résumé Suites

 1 vue  0 fois vendu

Le cours sur les suites porte sur des séquences ordonnées de nombres définis selon une règle précise. Il explore les différents types de suites (arithmétiques, géométriques, etc.), leur définition explicite ou récurrente, et les méthodes pour analyser leur comportement (convergence, div...

[Montrer plus]

Aperçu 2 sur 11  pages

  • 18 novembre 2024
  • 11
  • 2024/2025
  • Resume
  • Lycée
  • Lycée
  • Mathématique
  • 1
Tous les documents sur ce sujet (110)
avatar-seller
thomaschiousse2007
Chapitre 1
Suites

1.1 Raisonnement par récurrence
Théorème 1
On veut prouver qu'une certaine propriété P (n), dépendant d'un entier naturel n, est vraie
pour tout entier naturel n.
Si
• P (0) est vraie,
• pour tout entier naturel n, P (n) vraie implique P (n + 1) vraie,
Alors
pour tout entier naturel n, P (n) est vraie.


Démonstration. Ce théorème est admis ■
Il se peut que la propriété P (n) ne soit pas vraie pour quelques valeurs de n parmi les premières et
ne commence à être vraie qu'à partir d'un certain rang n0 auquel cas on utilise le théorème suivant :

Théorème 2
On veut prouver qu'une certaine propriété P (n), dépendant d'un entier naturel n, est vraie
pour tout entier naturel n supérieur ou égal à un certain entier naturel n0 .
Si
• P (n0 ) est vraie,
• pour tout entier naturel n ⩾ n0 , P (n) vraie implique P (n + 1) vraie,
Alors
pour tout entier naturel n ⩾ n0 , P (n) est vraie.


Démonstration. Ce théorème est admis ■
L'étape qui consiste à véri
er que P (n0 ) est vraie s'appelle l'initialisation et l'étape qui consiste
à véri
er que pour tout n ⩾ n0 , si la propriété P (n) est vraie alors la propriété P (n + 1) est
vraie s'appelle l'hérédité ou encore cette étape consiste à véri
er que la propriété est héréditaire.
L'hypothèse faite dans l'hérédité à savoir  si P(n) est vraie  s'appelle l'hypothèse de récurrence.


6

, 1.2 Limites d'une suite
1.2.1 Dé
nition de la convergence d'une suite

nition 3
Soient (un )n∈N une suite de nombre réels et ℓ un nombre réel.
On dit que la suite (un )n∈N a pour limite ℓ quand n tend vers +∞ ou aussi que la suite
(un )n∈N converge vers ℓ si et seulement si tout intervalle ouvert non vide contenant ℓ
contient tous les termes de la suite à partir d'un certain rang.
Si la suite (un )n∈N a une limite ℓ qui est un réel, on dit que la suite (un )n∈N converge ou
que la suite (un )n∈N est convergente.
Dans le cas contraire, on dit que la suite (un )n∈N diverge ou que la suite (un )n∈N est
divergente.


Interprétation graphique On place ℓ sur l'axe des ordonnées puis on se donne un intervalle
ouvert I quelconque contenant ℓ. A partir d'un certain rang p dépendant de l'intervalle I que l'on
s'est donné, tous les termes de la suite appartiennent à l'intervalle I . Pour n'importe quel intervalle
ouvert I contenant ℓ, aussi petit soit-il, on peut fournir un tel rang p.


an







p n


Théorème 4
Si la suite (un )n∈N converge, le nombre ℓ de la dé
nition 7 est unique.


Démonstration. Soit (un )n∈N une suite réelle convergente. Supposons que la suite (un )n∈N converge
à la fois vers le réel ℓ et vers le réel ℓ′ où de plus ℓ < ℓ′ .
Soit ϵ = ℓ−ℓ un réel strictement positif.

2
Posons I1 = ]ℓ − ϵ; ℓ + ϵ[ et I2 = ]ℓ′ − ϵ, ℓ′ + ϵ[. Les intervalles I1 et I2 sont disjoints ou encore les
intervalles I1 et I2 n'ont aucun nombre réel en commun
ℓ ℓ + ϵ = ℓ′ − ϵ ℓ′
I1 I2

ϵ = (ℓ − ℓ )/2
(ℓ − ℓ′ ) = 2ϵ


7

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur thomaschiousse2007. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 2,99 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

73216 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
2,99 €
  • (0)
  Ajouter