Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

METRIC SPACES EXAM QUESTIONS AND CORRECT ANSWERS

Note
-
Vendu
-
Pages
21
Qualité
A+
Publié le
23-11-2024
Écrit en
2024/2025

METRIC SPACES EXAM QUESTIONS AND CORRECT ANSWERS...

Établissement
METRIC SPACES
Cours
METRIC SPACES










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
METRIC SPACES
Cours
METRIC SPACES

Infos sur le Document

Publié le
23 novembre 2024
Nombre de pages
21
Écrit en
2024/2025
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

METRIC SPACES EXAM QUESTIONS
AND CORRECT ANSWERS
Axiom of Choice - ANSWER Given a sequence of non-empty subsets S₁, S₂,
... of a set X, ∃ a sequence (xₙ) s.t. xₙ ∈ Sₙ ∀ n.

DEFN: A distance function's 3 properties - ANSWER (i) Positivity: d(x,y) ≥ 0,
and d(x,y) = 0 iff x = y
(ii) Symmetry: d(x,y) = d(y,x)
(iii) △ inequality: d(x,y) ≤ d(x,z) + d(y,z) (in other words, the distance between
two points via a third point is always at least the distance between just the two
points).

A metric space is a set and a distance function together.

Examples: d₁, d₂, d_∞, discrete metric - ANSWER d₁ (v,w) = Σ |v_i - w_i|
d₂ (v,w) = √[Σ (v_i - w_i)²]
d_∞ (v,w) = sup |v_i - w_i|

Referred to as l_# distances or norms.

Discrete metric: d(x,y) = 1 if x ≠ y

2-adic metric, ultrametric property - ANSWER Using the integers, d(x,y) =
2^(-m), where 2^m is the largest power of 2 dividing x-y.

Ultrametric property: d(x,z) ≤ max(d(x,y), d(y,z))

DEFN: Norm - ANSWER Let V be a v.s. over reals. ‖.‖ : V → [0, ∞) is a norm
if all of the following hold (x, y ∈ V):
‖x‖ = 0 iff x = 0
‖λx‖ = |λ|‖x‖ for all a in R
‖x + y‖ ≤ ‖x‖ + ‖y‖

A norm can form a metric with d(x,y) := ‖x - y‖ given x, y ∈ V

,"Normed space" a v.s. with a norm.

Properties of Metrics from Norms - ANSWER Translation Invariance, i.e.
d(x+z, y+z) = d(x, y)
Scalar Invariance, i.e. d(λx, λy) = |λ|d(x,y)

DEFN: Subspace - ANSWER Sps (X, d) is a m.s., let Y ⊆ X. Then the
restriction of d to Y × Y forms a metric for Y s.t. (Y, d|_Y×Y) is a m.s. Y is a
subspace.

Ex: Let X = Reals, Y can be any of [0,1], Q, Z.

DEFN: Product Space - ANSWER let x1, x2 ∈ X & y1, y2 ∈ Y.
d_X×Y ((x1, y1), (x2, y2)) = √(d_X (x1, x2)² + d_Y (y1, y2)²)

DEFN: Open and Closed Balls - ANSWER Open ball: B(a,r) = {x∈X : d(x, a)
< r}
Closed ball: B⁻(a,r) same thing but ≤.

Unit ball is B(0,1).

In the discrete metric, the open ball B(a, 1) is just a, the closed ball B⁻(a, 1) is
the entire space, since everything not a is exactly distance 1 from a.

B_Y (a, r) = Y ∩ B_X (a, r)

DEFN: Bounded, and its eqv defns. - ANSWER Let X be a m.s. and Y⊆X. Y
is bounded if Y is contained in some open ball.

EQVs:
Y is contained in some closed ball.
The set {d(y1, y2) : y1, y2 ∈ Y} is a bounded subset of Reals. (∆ ineq from
above)

From 3rd to 1st, sps d(y1, y2) ≤ K for all y1, y2 ∈ Y. If empty, bounded. O/W,
pick a in Y, then d(a, y) < K + 1 ∀ y ∈ Y, and so Y ⊆ B(a, K+1)

, DEFN: Limit, proof limits are unique - ANSWER Sps that (xₙ) is a sequence
of elements in a metric space (X, d). x∈X. Then xₙ → x or lim n→∞ xₙ = x if
for every ε>0, ∃N s.t. ∀ n≥N, d(xₙ, x) < ε.

Limits are unique. Sps a,b are both limits of xₙ. Let δ := d(a,b), and let ε = δ/2,
then d(xₙ, a), d(xₙ,b) < δ/2 for suff. large n, but δ = d(a,b) ≤ d(a, xₙ) + d(b,xₙ) < δ
by ∆ ineq. Contradiction.

DEFN: Continuity - ANSWER Let (X, d_X) and (Y, d_Y) be metric spaces. f :
X → Y is cts at a ∈ X if ∀ ε > 0, ∃ δ > 0 s.t. ∀ x ∈ X where d_X (a, x) < δ, d_Y
(f(x), f(a)) < ε.

f is continuous if it continuous at every a in X.

DEFN: Uniform Continuity - ANSWER f : X → Y is unif cts if for any ε > 0,
∃ δ > 0 s.t. ∀ x₁, x₂ ∈ X where d_X (x₁, x₂) < δ, d_Y (f(x₁), f(x₂)) < ε

LEMMA: Continuity written with Limits and proof - ANSWER f : X → Y. f is
cts at a iff for any sequence (xₙ) with xₙ → a, we have f(xₙ) → f(a)

pf: 1st, Sps f is cts at a. ∴∀ε>0, ∃δ>0 s.t ∀x∈X where d(x,a)<δ, d(f(x),f(a))<ε.
Now if (xₙ) is a seq with limit a, then ∃N s.t. d(a,xₙ)<δ ∀n≥N.
∴ d(f(a), f(xₙ))<ε, ∴ f(xₙ)→f(a)

2nd, Sps f not cts at a. ∴∃ ε>0 s.t. ∀ δ > 0 ∃ x ∈ X where d(x,a) < δ but d(f(x),
f(a)) ≥ ε.
Taking δ = 1/n, for each n ∃ xₙ ∈ X where d(xₙ,a) < 1/n but d(f(xₙ), f(a)) ≥ ε.
∴ xₙ → a but f(xₙ) does not limit to f(a).

LEMMA: Let f : V → W be a linear map between normed v.s. f is cts iff {‖f(x)‖
: ‖x‖ ≤ 1} is bounded. Proof - ANSWER (→) Sps f is cts, and so is cts at 0.
Taking ε = 1, ∃ δ > 0 s.t. d(f(x), 0) < 1 when ‖x‖ < δ. (f(0) = 0).
∴ ‖f(x)‖ ≤ 1 for ‖x‖ < δ.
Take ‖v‖ = 1, so ‖δv/2‖ < δ, and so ‖f(δv/2)‖ ≤ 1.
∴ ‖f(v)‖ ≤ 2/δ, and hence is bounded.

(←) Sps ‖f(v)‖ < M ∀ v s.t. ‖v‖ ≤ 1.
Let ε > 0 and set δ = ε/M.
12,72 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
luzlinkuz Chamberlain University
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
1428
Membre depuis
4 année
Nombre de followers
849
Documents
27648
Dernière vente
2 heures de cela

3,7

303 revues

5
131
4
61
3
54
2
17
1
40

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions